CRT(中国剩余定理)学习笔记
先扔个模板题。链接。
简化题意:他让我求 \(x \equiv a_i \pmod{m_i}\) 的解。
例如,\(
\begin{cases}
x \equiv 1 \pmod{3} \\
x \equiv 1 \pmod{5} \\
x \equiv 2 \pmod{7}
\end{cases}
\) 这是样例。
令 \(M=m_1m_2\ldots m_n,M_i=M/m_i\) 。
显然 \(\gcd(M_i,m_i)=1\),所以 \(M_i\) 关于 \(m_i\) 的逆元存在,将其设为 \(t_i\)。
于是有 \(M_it_i \equiv 1 \pmod{m_i},M_it_i \equiv 0 \pmod{m_j}(j\ne i)\)。
把上面每个式子左右两边同乘 \(a_i\) ,就得到 \(M_it_ia_i \equiv a_i \pmod{m_i},M_it_ia_i \equiv 0 \pmod{m_j}(j\neq i)\)。
然后你惊奇的发现答案出来了。
代码:
#include<stdio.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
ll a[20], m[20], _M = 1, M[20], t[20];
void Exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) x = 1, y = 0;
else Exgcd(b, a % b, y, x), y -= a / b * x;
}
int main() {
int n;
ll x = 0, y = 0, ans = 0;
read(n);
rep(i, 1, n) read(m[i]), read(a[i]), _M *= m[i];
rep(i, 1, n) M[i] = _M / m[i];
rep(i, 1, n) {
x = 0, y = 0;
Exgcd(M[i], m[i], x, y);
t[i] = x < 0 ? x + m[i] : x;
}
rep(i, 1, n) ans += (a[i] * M[i] * t[i]), ans %= _M;
print(ans > 0 ? ans : ans + _M);
return 0;
}
附:逆元 (数年前的笔记)
\(C^m_n = C^{n-m}_n = {n! \over m! \times (n-m)!}\)
如果\(n \times m \equiv 1 \pmod{p}\),那么我们称\(m\)为\(n\)的逆元,即\(n^{-1} \pmod{p}\)
\({n \over m} \equiv n \times m^{-1} \pmod{p}\)
\({1 \over 2} \equiv 1 \times 2^{-1} \equiv 3 \pmod{5}\)
\(2 \times 3 \equiv 1 \pmod{5}\)
\(2^{-1} \equiv 3 \pmod{5}\)
费马小定理:\(m\)是大于\(1\)的整数,那么\(a^m \equiv a \pmod{m}\)
扩展:如果\(p\)是质数,那么\(a^{p-1} \equiv 1 \pmod{p}\),\(a^{p-2} \equiv a^{-1} \pmod{p}\)
如果\(p\)是质数,那么\(1,2,3,...,p-1\)都存在逆元
如果\(m\)是合数,那么\(1,2,3,...,m-1\)不都存在逆元
不存在\(k\)使得\(2 \times k \equiv 1 \pmod{4}\)
CRT(中国剩余定理)学习笔记的更多相关文章
- 扩展中国剩余定理学习笔记+模板(洛谷P4777)
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- CRT和EXCRT学习笔记
蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1(mod m_1)\] \[x≡a_2(mod m_2)\] ...
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- CRT和EXCRT简单学习笔记
中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...
- 「ExLucas」学习笔记
「ExLucas」学习笔记 前置芝士 中国剩余定理 \(CRT\) \(Lucas\) 定理 \(ExGCD\) 亿点点数学知识 给龙蝶打波广告 Lucas 定理 \(C^m_n = C^{m\% m ...
- [SDOI2010] 古代猪文 (快速幂+中国剩余定理+欧拉定理+卢卡斯定理) 解题报告
题目链接:https://www.luogu.org/problemnew/show/P2480 题目背景 “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色 ...
- 学习笔记:中国剩余定理(CRT)
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹 ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
随机推荐
- Kubernetes的认证机制
1.了解认证机制 API服务器可以配置一到多个认证的插件(授权插件同样也可以).API服务器接收到的请求会经过一个认证插件的列表,列表中的每个插件都可以检查这个请求和尝试确定谁在发送这个请求.列表中的 ...
- ES6深度解析3:Generators
介绍ES6 Generators 什么是Generators(生成器函数)?让我们先来看看一个例子. function* quips(name) { yield "hello " ...
- 通过PLSQL创建Database link,DBMS_Job,Procedure,实现Oracle跨库传输数据
前一阵领导安排了一个任务:定时将集团数据库某表的数据同步至我们公司服务器的数据库,感觉比写增删改查SQL有趣,特意记录下来,希望能帮到有类似需求的小伙伴,如有错误也希望各位不吝指教 环境描述: 集团数 ...
- Vector ArrayList LinkedList
三者都实现了List接口! Vector与ArrayList:采用顺序存储的方式,但是Vector是线程安全的,ArrayList是线程不安全的,按需使用: 当存储空间不足的时候,ArrayList默 ...
- mac 中一些日常小问题与快捷键
1.备忘录中的中英文符号问题 比如:在备忘录中使用英文符号时,总是会被自动的修改为中文符号 解决方法:系统偏好设置-键盘-文本,去选"使用智能引号和存折号" p.p1 { marg ...
- Arduino IDE 2.0 beta安装
1.在官网(Software | Arduino)下载安装包,此次提供操作系统有:Windows.Linux和macOC系统 2.点击安装包进行安装 3.点击我同意 4.点击下一步 5.选择安装路径( ...
- Java003-String字符串
1.这两种定义有什么区别 /*** * 面试题:这两种定义方式有什么区别? * 如何证明? * @param args */ public static void main(String[] args ...
- VBA:考场场标打印
Function pda(x) a = x If Len(a) = 1 Then ab = "00" & a ElseIf Len(a) = 2 Then ab = &qu ...
- hadoop源码_hdfs启动流程_3_心跳机制
hadoop在启动namenode和datanode之后,两者之间是如何联动了?datanode如何向namenode注册?如何汇报数据?namenode又如何向datanode发送命令? 心跳机制基 ...
- Spring RestTemplate 之exchange方法
●exchange方法提供统一的方法模板进行四种请求:POST,PUT,DELETE,GET (1)POST请求 String reqJsonStr = "{\"code\&quo ...