Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
常规题,简单写写罢(((
首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \(2^n\) 即可。
显然与 \(1\) 进行比赛的选手一定是区间 \([2,2],[3,4],[5,8],\cdots,[2^{k-1}+1,2^k],\cdots,[2^{n-1}+1,2^n]\) 中的最小值,而由于我们希望 \(1\) 号选手在比赛中取得胜利,故 \([2,2],[3,4],[5,8],\cdots,[2^{k-1}+1,2^k],\cdots,[2^{n-1}+1,2^n]\) 的最小值中不能出现打得过 \(1\) 的选手,于是问题转化为,有多少个 \(2\sim 2^n\) 的排列,使得任意 \(a_i\) 都不是 \([2,2],[3,4],[5,8],\cdots,[2^{k-1}+1,2^k],\cdots,[2^{n-1}+1,2^n]\)。
直接计算不是太容易,考虑容斥,记 \(F(i)\) 为钦定 \(i\) 个 \(a_j\) 是 \([2,2],[3,4],[5,8],\cdots,[2^{k-1}+1,2^k],\cdots,[2^{n-1}+1,2^n]\) 的最小值,剩余随便填的方案数,根据二项式反演,\(ans=\sum\limits_{i=0}^mF(i)(-1)^i\)。
那么怎么求 \(F(i)\) 呢?考虑状压 dp,\(dp_{i,j}\) 表示考虑了 \(a_1\sim a_i\),\(j\) 是一个二进制数,\(j\) 的 \(2^k\) 位为 \(1\) 当且仅当长度为 \(2^k\) 的区间的最小值已经被钦定为 \(a_1\sim a_i\) 中的某个值。考虑转移,显然可以枚举 \(a_{i+1}\) 是否被选择来转移,但是由于你不知道 \((a_i,a_{i+1})\) 中有多少个数已经被填了,故无法计算方案数,因此这个状态设计是不可行的。考虑换个角度,我们反着 \(dp\),\(dp_{i,j}\) 表示考虑了 \(a_{m-i+1}\sim a_m\),这样转移时候,所有被填入 \(j\) 中的区间的数都是 \(\ge a_{m-i+1}\) 的数,转移就容易了许多。枚举 \(a_{m-i}\) 填入了长度为多少的区间,假设为长度为 \(2^k\) 的区间,那么相当于在 \((a_{m-i},2^n]\) 中未填入钦定的区间中的 \(2^n-a_{m-i}-j\) 个数中选择 \(2^k-1\) 个数并排列好,方案数为 \(\dbinom{2^n-a_{m-i}-j}{2^k-1}\times (2^k)!\),预处理组合数转移即可,时间复杂度 \(n^22^n\)。
const int MAXN=16;
const int MAXP=1<<16;
const int MOD=1e9+7;
int n,m,lim,a[MAXN+3],fac[MAXP+5],ifac[MAXP+5];
int dp[MAXN+3][MAXP+5];
void initfac(int n){
fac[0]=ifac[0]=ifac[1]=1;
for(int i=2;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int x,int y){
if(x<y||x<0||y<0) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%d%d",&n,&m);lim=1<<n;initfac(lim);
for(int i=1;i<=m;i++) scanf("%d",&a[i]);
reverse(a+1,a+m+1);dp[0][0]=1;
for(int i=0;i<m;i++) for(int j=0;j<lim;j++){
for(int k=0;k<n;k++) if(~j>>k&1){
dp[i+1][j|(1<<k)]=(dp[i+1][j|(1<<k)]+1ll*dp[i][j]*binom(lim-a[i+1]-j,(1<<k)-1)%MOD*fac[1<<k])%MOD;
} dp[i+1][j]=(dp[i+1][j]+dp[i][j])%MOD;
}
int ans=0;
for(int i=0;i<lim;i++){
int cnt=__builtin_popcount(i),ways=1ll*dp[m][i]*fac[lim-1-i]%MOD;
if(cnt&1) ans=(ans-ways+MOD)%MOD;else ans=(ans+ways)%MOD;
} printf("%d\n",1ll*ans*lim%MOD);
return 0;
}
Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)的更多相关文章
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)
Bichrome Spanning Tree 题意: 给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色. 现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成 ...
- AtCoder Regular Contest 075 E - Meaningful Mean(树状数组)
题目大意:求一个数组中,平均值不小于k的连续子序列个数 所有数减去k,算个前缀和出来,就变成二维数点问题了. 没有修改,离线的话就是CZL所说的“NOIP最喜欢的套路”了:倒着加进BIT,以权值为数组 ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
- AtCoder Regular Contest 095
AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
随机推荐
- MySQL:提高笔记-2
MySQL:提高笔记-2 学完基础的语法后,进一步对 MySQL 进行学习,第一篇为:MySQL:提高笔记-1,这是第二篇内容 说明:这是根据 bilibili 上 黑马程序员 的课程 mysql入门 ...
- Beta阶段第六次会议
第六次会议 时间:2020.5.22 完成工作 姓名 任务 难度 完成度 xyq 1.编写技术博客 中 90% ltx 1.编写小程序2.添加全局变量之后页面无法加载的bug 中 90% lm(迟到) ...
- InitSpatialMetaData()速度慢的问题
解决方法:with sqlite3.connect(dbfile) as con: con.enable_load_extension(True) con.execute("SELECT l ...
- 从四个方向分析我们可以从linux学到什么
我们真正关心的是自身可以从这个生态圈中获得些什么?说得更直白一点就是,我们可以从linux系统上面学到点什么,它对我们个人的成长和发展有哪些积极的因素.个人觉得,完全可以通过下面四个维度并结合自己的兴 ...
- Less-5闯关失败
进行第五关的通关还是用之前的方式进行测试以及判断是什么类型的注入.通过判断我们不难发现是字符型注入.但是出了问题,我们会发现按照原来的步骤进行注入都会返回"You are in " ...
- 字符串与模式匹配算法(六):Needleman–Wunsch算法
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...
- hdu 1502 Regular Words(DP)
题意: 一个单词X由{A,B,C}三种字母构成. A(X):单词X中A的个数.B(X),C(X)同理. 一个单词X如果是regular word必须满足A(X)=B(X)=C(X)且对于X的任意前缀有 ...
- hdu 2086 A1 = ? (公式推导)
有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).若给出A0, An+1, 和 C1, C2, .....Cn.请编程计算A1 = ? Inp ...
- Spark面试题(四)
1.Spark中的HashShufle的有哪些不足? 1)shuffle产生海量的小文件在磁盘上,此时会产生大量耗时的.低效的IO操作: 2)容易导致内存不够用,由于内存需要保存海量的文件操作句柄和临 ...
- Redis 客户端重试指南
本作品采用知识共享署名-非商业性使用 4.0 国际许可协议进行许可. 在互联网服务中,特别是在云环境下,网络及硬件环境复杂,所有应用程序都可能遇到暂时性故障.暂时性故障包括瞬时的网络抖动,服务暂时不可 ...