Codeforces 690A2 - Collective Mindsets (medium)
一道脑筋急转弯的结论题。
首先我们考虑对于某个特定的金币数 \(m\),有哪些 \(n\) 满足条件。考虑最 naive 的情况,\(m=0\):显然 \(n=1,2\) 满足条件,而对于 \(n=3\),由于总共只有 \(0\) 个金币,因此第 \(2,3\) 个人会且只会拿到 \(0\) 个金币,而即便第一个人被杀,问题转化为 \(n=2\) 的情形,另外两个人也会活下来,没有做到“严格更优”,因此另外两人必然投反对,第一个人也就被杀了。对于 \(n=4\),第一个人自己肯定赞成,由于第一个人被杀后问题转化为 \(n=3\) 的情形,此时第二个人必然被杀,因此第二个人也会赞成,后两人由于不管怎么样都是 \(0\) 个金币且一定活下来,因此自然投反对,\(2\) 对 \(2\),因此第一个人会活下来。同理 \(n=5\),后四个人不管怎么样都是 \(0\) 个金币,都投反对,因此第一个人会被杀;\(n=6\),第一个人赞成,由于第一个人被杀后,第二个人就变为 \(n=5\) 的分配金币情况,不论怎样都被杀,因此第二个人也会赞成,后四个人自然反对,\(2\) 对 \(4\),人数没过半,第一个人被杀;\(n=7\),第一、二、三个人肯定都会赞成,否则轮到它们分的时分别是 \(n=5,6\) 的情况,这两种情况都会导致分金币的人被杀,但另外四个人还剩会反对,\(3\) 对 \(4\),人还是不够,被杀;\(n=8\),类似地有前四个人投赞成,后四个人投反对,刚好 \(4\) 对 \(4\)。
相信推到这里,聪明的你已经发现,对于 \(m=0\) 的情况,符合条件的 \(n\) 可以写成 \(2^k\) 的形式 \((k\in\mathbb{Z})\)
接下来考虑推广到更一般的情况,容易注意到一件事情,那就是当 \(n=2m\) 时一定符合条件,此时第一个人只用把金币分给与它所在位置奇偶性相同的人即可,这个不难归纳证明。同理 \(n=2m+1\) 时候也符合条件,类似地分给第 \(3,5,7,\cdots,2k+1,\cdots,2m+1(k\in[1,m])\) 即可。我们考虑从 \(n=2m+2\) 开始推起,显然当 \(n=2m+2\) 时第一个人只用拿金币贿赂第 \(3,5,7,\cdots,2m+1\) 个人即可,因为如果第一个人被杀死了,轮到第二个人分金币,他肯定会分给第 \(4,6,8,\cdots,2m+2\) 个人,这些人就一分钱都莫得了,加上自己,刚好 \(m+1\) 个人。但是 \(n=2m+3\) 时就没那么走运了,因为 \(m\) 个金币最多贿赂 \(m\) 个人,即便你把这些金币分给第 \(5,7,9,\cdots,2m+3\) 个人,让他们赞成你,又如何?第二个人必然反对——因为如果第一个人被杀死了,轮到他分,不管怎样都是 \(0\) 个金币,没有做到“严格更优”,同理第三个人也会反对,第 \(4,6,8,\cdots,2m+2\) 个人也就更会反对了——如果第二个人分他们本可以拿的更多的,因此总共 \(m+1\) 人赞成,第一个人被杀。对于 \(n=2m+4\) 的情况,首先第一个人会赞成,其次第二个人也会赞成,因为如果第一个人被杀问题就变为 \(n=2m+3\),他也就 GG 了,然后你再拿金币贿赂第 \(6,8,\cdots,2m+4\) 个人——因为如果第一个人被杀,第二个人 \(n=2m+3\) 的情况也被杀,就轮到第三个人分金币,那他肯定会分给第 \(5,7,\cdots,2m+3\) 个人,就没有这些人的份了,他们都投赞成,总共 \(m+2\) 个赞成,刚好。\(n=2m+5\),第一个人赞成自己,第二个人反对,因为就算第一个人被杀轮到他分还是 \(0\) 个,第三、四、五个人同理反对,此时再贿赂 \(m\) 个人,最多 \(m+1\) 个赞成,被杀。同理 \(n=2m+6,2m+7\) 也会被杀,而对于 \(n=2m+8\),第一个人显然赞成,第二、三、四个人也赞成,否则轮到他们时他们就被杀了,此时再贿赂 \(m\) 个人,总共 \(m+4\),刚好过半。
相信聪明的读者一定还能发现,对于这种情况,符合条件的 \(n\) 一定等于 \(2^k+2m(k\in\mathbb{Z})\),因此对于 \(n\) 是奇数的情况答案显然是 \(\dfrac{n-1}{2}\),否则记 \(k\) 为满足 \(2^k\le n\) 的最大的整数,答案就是 \(\dfrac{n-2^k}{2}\)。
真·这篇题解码了我 1.2k,尽管只是个 *2300
Codeforces 690A2 - Collective Mindsets (medium)的更多相关文章
- Collective Mindsets (medium) (逻辑题)
B - Collective Mindsets (medium) Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I6 ...
- Collective Mindsets (easy)(逻辑题)
Collective Mindsets (easy) Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d &am ...
- CodeForces 690C2 Brain Network (medium)(树上DP)
题意:给定一棵树中,让你计算它的直径,也就是两点间的最大距离. 析:就是一个树上DP,用两次BFS或都一次DFS就可以搞定.但两次的时间是一样的. 代码如下: #include<bits/std ...
- Maximum Control (medium) Codeforces - 958B2
https://codeforces.com/contest/958/problem/B2 题解:https://www.cnblogs.com/Cool-Angel/p/8862649.html u ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- codeforces 690D2 D2. The Wall (medium)(组合数学)
题目链接: D2. The Wall (medium) time limit per test 2 seconds memory limit per test 256 megabytes input ...
- codeforces 690C2 C2. Brain Network (medium)(bfs+树的直径)
题目链接: C2. Brain Network (medium) time limit per test 2 seconds memory limit per test 256 megabytes i ...
- 【树形DP】codeforces K. Send the Fool Further! (medium)
http://codeforces.com/contest/802/problem/K [题意] 给定一棵树,Heidi从根结点0出发沿着边走,每个结点最多经过k次,求这棵树的最大花费是多少(同一条边 ...
- 【贪心】codeforces B. Heidi and Library (medium)
http://codeforces.com/contest/802/problem/B [题意] 有一个图书馆,刚开始没有书,最多可容纳k本书:有n天,每天会有人借一本书,当天归还:如果图书馆有这个本 ...
随机推荐
- T-SQL——关于XML类型
目录 0. 将结果集转化为XML格式 1. 列值拼接为字符串 2. 字符串转换为列值 3. 一些说明 参考 志铭-2021年10月23日 10:43:21 0. 将结果集转化为XML格式 测试数据 I ...
- Scrum Meeting 14
第14次例会报告 日期:2021年06月07日 会议主要内容概述: 汇报了已完成的工作,明确了下一步目标,正在努力赶进度. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wi ...
- [软工顶级理解组] Beta阶段团队贡献分评分
贡献分评分依据 下述表格适用于前端.后端.爬虫开发者的评分,在此基础上进行增减. 类别 程度 加减分 准时性 提前完成 +0 按时完成 +0 延后完成,迟交时间一天内或未延误进度 -2 延后完成,迟交 ...
- netty系列之:netty实现http2中的流控制
目录 简介 http2中的流控制 netty对http2流控制的封装 Http2FlowController Http2LocalFlowController Http2RemoteFlowContr ...
- Netty:Netty的介绍以及它的核心组件(一)—— Channel
1. Netty 介绍 Netty 是一个无阻塞的输入/输出(NIO)框架,它使开发低级网络服务器和客户端变得相对简单.Netty为需要在套接字级别上工作的开发人员提供了令人难以置信的强大功能,例如, ...
- 算法:汉诺塔问题(Tower of Brahma puzzle)
一.算法背景 最早发明这个问题的人是法国数学家爱德华·卢卡斯.传说越南河内某间寺院有三根银棒(A, B, C),上串 64 个金盘. 寺院里的僧侣依照一个古老的预言,以上述规则移动这些盘子:预言说当这 ...
- set prompt = "任意匹配字符" 当前目录详解
转载:https://blog.csdn.net/alexdream/article/details/6865730 研究了两天的FreeBSD,总是感觉输入提示符那里怪怪的,而且默认的提示符还不带显 ...
- 矩形覆盖 牛客网 剑指Offer
矩形覆盖 牛客网 剑指Offer 题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? class Solution: ...
- 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有
1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...
- CSS学习笔记:display属性
目录 一.display属性概述 1. 块级元素和行内元素的区别 2.常见的块级元素和行内元素 3. display属性常见的属性值 二.测试display取各属性值的效果 1. 测试inline和b ...