Codeforces 690A2 - Collective Mindsets (medium)
一道脑筋急转弯的结论题。
首先我们考虑对于某个特定的金币数 \(m\),有哪些 \(n\) 满足条件。考虑最 naive 的情况,\(m=0\):显然 \(n=1,2\) 满足条件,而对于 \(n=3\),由于总共只有 \(0\) 个金币,因此第 \(2,3\) 个人会且只会拿到 \(0\) 个金币,而即便第一个人被杀,问题转化为 \(n=2\) 的情形,另外两个人也会活下来,没有做到“严格更优”,因此另外两人必然投反对,第一个人也就被杀了。对于 \(n=4\),第一个人自己肯定赞成,由于第一个人被杀后问题转化为 \(n=3\) 的情形,此时第二个人必然被杀,因此第二个人也会赞成,后两人由于不管怎么样都是 \(0\) 个金币且一定活下来,因此自然投反对,\(2\) 对 \(2\),因此第一个人会活下来。同理 \(n=5\),后四个人不管怎么样都是 \(0\) 个金币,都投反对,因此第一个人会被杀;\(n=6\),第一个人赞成,由于第一个人被杀后,第二个人就变为 \(n=5\) 的分配金币情况,不论怎样都被杀,因此第二个人也会赞成,后四个人自然反对,\(2\) 对 \(4\),人数没过半,第一个人被杀;\(n=7\),第一、二、三个人肯定都会赞成,否则轮到它们分的时分别是 \(n=5,6\) 的情况,这两种情况都会导致分金币的人被杀,但另外四个人还剩会反对,\(3\) 对 \(4\),人还是不够,被杀;\(n=8\),类似地有前四个人投赞成,后四个人投反对,刚好 \(4\) 对 \(4\)。
相信推到这里,聪明的你已经发现,对于 \(m=0\) 的情况,符合条件的 \(n\) 可以写成 \(2^k\) 的形式 \((k\in\mathbb{Z})\)
接下来考虑推广到更一般的情况,容易注意到一件事情,那就是当 \(n=2m\) 时一定符合条件,此时第一个人只用把金币分给与它所在位置奇偶性相同的人即可,这个不难归纳证明。同理 \(n=2m+1\) 时候也符合条件,类似地分给第 \(3,5,7,\cdots,2k+1,\cdots,2m+1(k\in[1,m])\) 即可。我们考虑从 \(n=2m+2\) 开始推起,显然当 \(n=2m+2\) 时第一个人只用拿金币贿赂第 \(3,5,7,\cdots,2m+1\) 个人即可,因为如果第一个人被杀死了,轮到第二个人分金币,他肯定会分给第 \(4,6,8,\cdots,2m+2\) 个人,这些人就一分钱都莫得了,加上自己,刚好 \(m+1\) 个人。但是 \(n=2m+3\) 时就没那么走运了,因为 \(m\) 个金币最多贿赂 \(m\) 个人,即便你把这些金币分给第 \(5,7,9,\cdots,2m+3\) 个人,让他们赞成你,又如何?第二个人必然反对——因为如果第一个人被杀死了,轮到他分,不管怎样都是 \(0\) 个金币,没有做到“严格更优”,同理第三个人也会反对,第 \(4,6,8,\cdots,2m+2\) 个人也就更会反对了——如果第二个人分他们本可以拿的更多的,因此总共 \(m+1\) 人赞成,第一个人被杀。对于 \(n=2m+4\) 的情况,首先第一个人会赞成,其次第二个人也会赞成,因为如果第一个人被杀问题就变为 \(n=2m+3\),他也就 GG 了,然后你再拿金币贿赂第 \(6,8,\cdots,2m+4\) 个人——因为如果第一个人被杀,第二个人 \(n=2m+3\) 的情况也被杀,就轮到第三个人分金币,那他肯定会分给第 \(5,7,\cdots,2m+3\) 个人,就没有这些人的份了,他们都投赞成,总共 \(m+2\) 个赞成,刚好。\(n=2m+5\),第一个人赞成自己,第二个人反对,因为就算第一个人被杀轮到他分还是 \(0\) 个,第三、四、五个人同理反对,此时再贿赂 \(m\) 个人,最多 \(m+1\) 个赞成,被杀。同理 \(n=2m+6,2m+7\) 也会被杀,而对于 \(n=2m+8\),第一个人显然赞成,第二、三、四个人也赞成,否则轮到他们时他们就被杀了,此时再贿赂 \(m\) 个人,总共 \(m+4\),刚好过半。
相信聪明的读者一定还能发现,对于这种情况,符合条件的 \(n\) 一定等于 \(2^k+2m(k\in\mathbb{Z})\),因此对于 \(n\) 是奇数的情况答案显然是 \(\dfrac{n-1}{2}\),否则记 \(k\) 为满足 \(2^k\le n\) 的最大的整数,答案就是 \(\dfrac{n-2^k}{2}\)。
真·这篇题解码了我 1.2k,尽管只是个 *2300
Codeforces 690A2 - Collective Mindsets (medium)的更多相关文章
- Collective Mindsets (medium) (逻辑题)
B - Collective Mindsets (medium) Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I6 ...
- Collective Mindsets (easy)(逻辑题)
Collective Mindsets (easy) Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d &am ...
- CodeForces 690C2 Brain Network (medium)(树上DP)
题意:给定一棵树中,让你计算它的直径,也就是两点间的最大距离. 析:就是一个树上DP,用两次BFS或都一次DFS就可以搞定.但两次的时间是一样的. 代码如下: #include<bits/std ...
- Maximum Control (medium) Codeforces - 958B2
https://codeforces.com/contest/958/problem/B2 题解:https://www.cnblogs.com/Cool-Angel/p/8862649.html u ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- codeforces 690D2 D2. The Wall (medium)(组合数学)
题目链接: D2. The Wall (medium) time limit per test 2 seconds memory limit per test 256 megabytes input ...
- codeforces 690C2 C2. Brain Network (medium)(bfs+树的直径)
题目链接: C2. Brain Network (medium) time limit per test 2 seconds memory limit per test 256 megabytes i ...
- 【树形DP】codeforces K. Send the Fool Further! (medium)
http://codeforces.com/contest/802/problem/K [题意] 给定一棵树,Heidi从根结点0出发沿着边走,每个结点最多经过k次,求这棵树的最大花费是多少(同一条边 ...
- 【贪心】codeforces B. Heidi and Library (medium)
http://codeforces.com/contest/802/problem/B [题意] 有一个图书馆,刚开始没有书,最多可容纳k本书:有n天,每天会有人借一本书,当天归还:如果图书馆有这个本 ...
随机推荐
- SpringCloud 2020.0.4 系列之Eureka
1. 概述 老话说的好:遇见困难,首先要做的是积极的想解决办法,而不是先去泄气.抱怨或生气. 言归正传,微服务是当今非常流行的一种架构方式,其中 SpringCloud 是我们常用的一种微服务框架. ...
- 【UE4 C++】 UnrealPak 与 Pak 的制作、挂载、加载
简介 通过 UnrealPak,可以将资源打包成 Pak 文件 Pak文件是UE4游戏生成的数据包文件. Pak 之前一般先有 Cooked 步骤,将资源烘焙为对应平台支持的资源 一般打包后的项目使用 ...
- tomcat内存马原理解析及实现
内存马 简介 Webshell内存马,是在内存中写入恶意后门和木马并执行,达到远程控制Web服务器的一类内存马,其瞄准了企业的对外窗口:网站.应用.但传统的Webshell都是基于文件类型的,黑客 ...
- 6月8日 Scrum Meeting
日期:2021年6月8日 会议主要内容概述: 确定6.9日下午两点到五点集中对接 初步确定主题配色和echarts默认图表颜色 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作 ...
- USB线上/串口/I2C引脚串联电阻的作用
对引脚的保护. 第一是阻抗匹配.因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等. 第二是可以减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等.因 ...
- C语言零基础入门难发愁,那就快来看看这篇基础整理资料吧
C语言程序的结构认识 用一个简单的c程序例子,介绍c语言的基本构成.格式.以及良好的书写风格,使小伙伴对c语言有个初步认识. 例1:计算两个整数之和的c程序: #include main() { in ...
- hdu 5100 Chessboard (额,,,,,就叫它趣味数学题吧)
题意: 用K*1的砖块去覆盖N*N的大矩形,问最多能覆盖多少块. 详细证明:(转载自matrix67) Matrix67: The Aha Moments 趣题:用 k × 1 的矩形覆盖 n × n ...
- 力扣 - 剑指 Offer 58 - I. 翻转单词顺序
题目 剑指 Offer 58 - I. 翻转单词顺序 思路1 假如题目要求我们翻转字符串,那么我们可以从末尾往前开始遍历每一个字符,同时将每一个字符添加到临时空间,最后输出临时空间的数据就完成翻转了, ...
- 【数据结构&算法】04-线性表
目录 前言 线性表的定义 线性表的数据类型&操作 线性表操作 数据类型定义 复杂操作 线性表的顺序存储结构 顺序存储结构的定义 顺序存储方式 数据长度和线性表长度的区别 地址的计算方法 顺序存 ...
- 三(二)、AOP配置
一.AOP的配置(注解) 步骤一.导入jar包: 处理那5个jar包之外,还需要导入: aopalliance aspectjweaver spring-aop spring-aspects 步骤二. ...