题面传送门

一道多项式的 hot tea

首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lfloor\dfrac{c_i}{2}\rfloor\le m\)。不难发现这里涉及下取整,稍微有些棘手,因此考虑将这个下取整去掉,显然 \(\lfloor\dfrac{c_i}{2}\rfloor=\dfrac{c_i-c_i\bmod 2}{2}\),故原式可化为 \(\sum\limits_{i=1}^D\dfrac{c_i-c_i\bmod 2}{2}\le m\),我们将左右两边同乘 \(2\),再稍微变个形可得 \(\sum\limits_{i=1}^Dc_i-\sum\limits_{i=1}^Dc_i\bmod 2\le 2m\),显然 \(\sum\limits_{i=1}^Dc_i=n\),故 \(\sum\limits_{i=1}^Dc_i\bmod 2\le n-2m\),也就是 \(c\) 数组中奇数个数 \(\le n-2m\)

方便起见我们先特判掉 \(n-2m<0\) 和 \(n-2m\ge D\) 的情况,两种情况的答案分别为 \(0\) 和 \(D^n\)。接下来我们着重考虑 \(0\le n-2m\lt D\) 的情况。我们记 \(f_i\) 为 \(c\) 数列中恰好存在 \(i\) 个奇数的方案数,那么答案即为 \(\sum\limits_{i=0}^{n-2m}f_i\),注意到这个“恰好 \(i\) 个”很棘手,因此按照套路设 \(g_i\) 表示钦定 \(i\) 个 \(c_j\) 为奇数,剩余随便排的方案数,求出 \(g_i\) 后即可二项式反演求出 \(f_i\),即 \(f_i=\sum\limits_{j=i}\dbinom{j}{i}(-1)^{j-i}g_j\),把式子稍微转化一下即可得到 \(f_i=\dfrac{1}{i!}\sum\limits_{j}j!g_j\times(-1)^{j-i}\dfrac{1}{(j-i)!}\),这显然是一个差卷积的形式,因此求出 \(g_i\) 之后一遍差卷积即可求出答案了。

接下来我们的任务就是求出 \(g_i\)。首先我们肯定要从 \(D\) 种数中选出 \(i\) 个并钦定它们出现次数为奇数,这样选的方案数为 \(\dbinom{D}{i}\)。其次,注意到求出每个数的出现次数后求原序列的方案数是一个二项加法卷积,因此考虑 EGF,根据生成函数那一套理论,我们钦定出现次数为奇数的 EGF 为 \(\dfrac{e^x-e^{-x}}{2}\),其余没有限制的数的 EGF 为 \(e^x\),故 \(g_i=\dbinom{D}{i}n![x^n](\dfrac{e^x-e^{-x}}{2})^i(e^x)^{D-i}\),我们考虑用二项式定理展开并将其变个形,则可以得到:

\[\begin{aligned}
g_i&=\dbinom{D}{i}n![x^n](\dfrac{e^x-e^{-x}}{2})^i(e^x)^{D-i}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}[x^n](e^x-e^{-x})^i(e^x)^{D-i}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}[x^n]\sum\limits_{j=0}^i\dbinom{i}{j}(e^x)^j(-e^{-x})^{i-j}(e^x)^{D-i}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}[x^n]\sum\limits_{j=0}^i\dbinom{i}{j}(e^x)^j(e^{-x})^{i-j}(e^x)^{D-i}(-1)^{i-j}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}[x^n]\sum\limits_{j=0}^i\dbinom{i}{j}(e^x)^{D-2(i-j)}(-1)^{i-j}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}\sum\limits_{j=0}^i\dbinom{i}{j}[x^n](e^x)^{D-2(i-j)}(-1)^{i-j}\\
&=\dbinom{D}{i}\dfrac{n!}{2^i}\sum\limits_{j=0}^i\dbinom{i}{j}\dfrac{1}{n!}(D-2(i-j))^n(-1)^{i-j}\\
&=\dbinom{D}{i}\dfrac{1}{2^i}\sum\limits_{j=0}^i\dfrac{i!}{j!(i-j)!}(D-2(i-j))^n(-1)^{i-j}\\
&=\dbinom{D}{i}\dfrac{1}{2^i}i!\sum\limits_{j=0}^i\dfrac{1}{j!}·\dfrac{(D-2(i-j))^n(-1)^{i-j}}{(i-j)!}
\end{aligned}
\]

推到这一步不难发现这是一个卷积的形式,记 \(a_j=\dfrac{1}{j!},b_j=\dfrac{(D-2j)^n(-1)^{j}}{j!}\),跑遍卷积即可求出 \(g_i\)

时间复杂度 \(D\log D\)。

const int MAXP=1<<18;
const int MOD=998244353;
const int pr=3;
const int ipr=(MOD+1)/3;
const int INV2=MOD+1>>1;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int D,n,m,fac[MAXP+5],ifac[MAXP+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;}
int rev[MAXP+5];
void NTT(vector<int> &a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
int W=qpow((type<0)?ipr:pr,(MOD-1)/i);
for(int j=0;j<len;j+=i){
for(int k=0,w=1;k<(i>>1);k++,w=1ll*w*W%MOD){
int X=a[j+k],Y=1ll*a[(i>>1)+j+k]*w%MOD;
a[j+k]=(X+Y)%MOD;a[(i>>1)+j+k]=(X-Y+MOD)%MOD;
}
}
}
if(type==-1){
int ivn=qpow(len,MOD-2);
for(int i=0;i<len;i++) a[i]=1ll*a[i]*ivn%MOD;
}
}
vector<int> conv(vector<int> a,vector<int> b){
int LEN=1;while(LEN<a.size()+b.size()) LEN<<=1;
a.resize(LEN,0);b.resize(LEN,0);NTT(a,LEN,1);NTT(b,LEN,1);
for(int i=0;i<LEN;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,LEN,-1);return a;
}
int main(){
scanf("%d%d%d",&D,&n,&m);init_fac(D);
if(n-2*m>=D) return printf("%d\n",qpow(D,n)),0;
if(n-2*m<0) return printf("0\n"),0;
vector<int> a(D+1),b(D+1);
for(int i=0;i<=D;i++){
a[i]=ifac[i];
if(i&1) b[i]=(MOD-1ll*qpow((D-2*i+MOD)%MOD,n)*ifac[i]%MOD)%MOD;
else b[i]=1ll*qpow((D-2*i+MOD)%MOD,n)*ifac[i]%MOD;
}
vector<int> f=conv(a,b),h(D+1);f.resize(D+1);
for(int i=0,pw=1;i<=D;i++,pw=1ll*pw*INV2%MOD)
f[i]=1ll*f[i]*binom(D,i)%MOD*pw%MOD*fac[i]%MOD;
for(int i=0;i<=D;i++) f[i]=1ll*f[i]*fac[i]%MOD;
for(int i=0;i<=D;i++){
if(i&1) h[D-i]=MOD-ifac[i];
else h[D-i]=ifac[i];
} vector<int> g=conv(f,h);int ans=0;
for(int i=0;i<=n-2*m;i++) ans=(ans+1ll*g[D+i]*ifac[i])%MOD;
printf("%d\n",ans);
return 0;
}

洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)的更多相关文章

  1. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  2. LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠

    题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...

  3. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  4. 题解 P5401 [CTS2019]珍珠

    蒟蒻语 这题太玄学了,蒟蒻写篇题解来让之后复习 = = 蒟蒻解 假设第 \(i\) 个颜色有 \(cnt_i\) 个珍珠. \(\sum\limits_{i=1}^{n} \left\lfloor\f ...

  5. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  6. [洛谷P1390]公约数的和·莫比乌斯反演

    公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...

  7. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  8. 洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演

    易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{ ...

  9. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

随机推荐

  1. 【数据结构与算法Python版学习笔记】图——强连通分支

    互联网 我们关注一下互联网相关的非常巨大图: 由主机通过网线(或无线)连接而形成的图: 以及由网页通过超链接连接而形成的图. 网页形成的图 以网页(URI作为id)为顶点,网页内包含的超链接作为边,可 ...

  2. Redis:学习笔记-03

    Redis:学习笔记-03 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 7. Redis配置文件 启动 ...

  3. Linux中检查字符串是否为合法IP地址的shell脚本

    #!/bin/bash #判断IP地址是否为有效IP CHKECK_IP () { CHECK_STEP1=`echo $1 | awk -F"." '{print NF}'` i ...

  4. (四)、Docker 镜像

    1.Docker镜像是什么? 镜像是一种轻量级.可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码.运行时.库.环境变量和配置文件. 2.Do ...

  5. 线路由器频段带宽是是20M好还是40M好

    无线路由器频段带宽还是40M好. 40M的信号强,速度快.   1.20MHz在11n的情况下能达到144Mbps带宽.穿透性不错.传输距离较远 40MHz在11n的情况下能达到300Mbps带宽.穿 ...

  6. 【BZOJ-2199】奶牛议会

    链接: BZOJ-2199 题意: 给出 \(n(1\leq n\leq 1000)\) 个点,\(m(1\leq m\leq 4000)\) 个形如:"点 \(a\) 取 \(ca\) 或 ...

  7. 『学了就忘』Linux基础 — 13、Linux系统的分区和格式化

    目录 1.Linux系统的分区 (1)磁盘分区定义 (2)两种分区表形式 (3)MBR分区类型 2.Linux系统的格式化 (1)格式化定义 (2)格式化说明 1.Linux系统的分区 (1)磁盘分区 ...

  8. Python import urllib2 ImportError: No module named 'urllib2'

    python3 import urllib2 import urllib2 ImportError: No module named 'urllib2' python3.3里面,用urllib.req ...

  9. GoLang设计模式13 - 观察者模式

    观察者模式是一种行为型设计模式.这种模式允许一个实例(可以称为目标对象)发布各种事件(event)给其他实例(观察者).这些观察者会对目标对象进行订阅,这样每当目标对象发生变化时,观察者就会收到事件( ...

  10. Executors:为什么阿里不待见我?

    大家好,我是Excutors,一个老实的工具类. 有个叫老三的程序员在文章 要是以前有人这么讲线程池,我早就该明白了!里挖了一个坑,说要把我介绍给大家认识认识. 我其实挺委屈的,作为一个没得感情,老实 ...