深入探究JavaScript的Event Loop

Javascript是一门单线程语言

但是在运行时难免会遇到需要较长执行时间的任务如: 向后端服务器发送请求。 其他的任务不可能都等它执行完才执行的(同步)否则效率太低了, 于是异步的概念就此产生: 当遇到需要较长时间的任务时将其放入"某个地方"后继续执行其他同步任务, 等所有同步任务执行完毕后再poll(轮询)刚刚这些需要较长时间的任务并得到其结果

而处理异步任务的这一套流程就叫Event Loop即事件循环,是浏览器或Node的一种解决javaScript单线程运行时不会阻塞的一种机制, 于是更完善的说法是: Javascript是一门单线程非阻塞语言

Event Loop的结构

  • 堆(heap): 用于存放JS对象的数据结构
  • 调用栈(stack): 同步任务会按顺序在调用栈中等待主线程依次执行
  • Web API: 是浏览器/Node 用于处理异步任务的地方
  • 回调队列(callbacks queue): 经过Web API处理好的异步任务会被一次放入回调队列中, 等一定条件成立后被逐个poll(轮询)放入stack中被主线程执行

回调队列(callbacks queue)的分类

回调队列(callbacks queue)进而可以细分为

  1. 宏任务(macroTasks)

    • script全部代码、
    • setTimeout、
    • setInterval、
    • setImmediate(浏览器暂时不支持,只有IE10支持,具体可见MDN)、
    • I/O、UI Rendering
  2. 微任务(microTasks)

    • Process.nextTick(Node独有)
    • MutationObserver
    • Promise、
    • Object.observe(废弃)

Event Loop的执行顺序

  1. 首先顺序执行初始化代码(run script), 同步代码放入调用栈中执行, 异步代码放入对应的队列中
  2. 所有同步代码执行完毕后,确认调用栈(stack)是否为空, 只有stack为为空才能开始按照队列的特性轮询执行 微任务队列中的代码
  3. 只有当所有微任务队列中的任务执行完后, 才能执行宏任务队列中的下一个任务

用流程图表示:

通过题目来深入

题目1:

setTimeout(() => {
console.log(1)
}, 0)
Promise.resolve().then(
() => {
console.log(2)
}
)
Promise.resolve().then(
() => {
console.log(4)
}
)
console.log(3)
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--打印2, 执行完后调用栈为空, 检查微任务队列是否还有任务有则执行

    2. 取出第二个任务到调用栈--打印4, 执行完后调用栈为空, 微任务队列为空, 第一个宏任务(run script)完成, 可以轮询宏任务队列的下一个任务

  3. 开始轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

3 2 4 1

到这需要说明一个东西就是: setTimeout的回调执行是不算在run script中的, 具体原因我并未弄清, 有明白的同学欢迎解释


题目2:

setTimeout(()=>{
console.log(1)
}, 0) new Promise((resolve, reject) => {
console.log(2)
resolve()
})
.then(
() => {
console.log(3)
}
)
.then(
() => {
console.log(4)
}
)
console.log(5)
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--打印3, 执行完后调用栈为空, 此时第一个then()返回的Promise有了状态、结果, 于是将第二个then()放入微任务队列中, 检查微任务队列是否还有任务有则执行

    1. 调用栈、微任务队列为空, 宏任务run script执行完毕

  3. 开始轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

2 5 3 4 1

题目3:

const first = () => {
return new Promise((resolve, reject) => {
console.log(3)
let p = new Promise((resolve, reject) => {
console.log(7)
setTimeout(() => {
console.log(5)
}, 0)
resolve(1)
})
resolve(2)
p.then(
arg => {
console.log(arg)
}
)
})
} first().then(
arg => {
console.log(arg)
}
) console.log(4)
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--打印1, 执行完后调用栈为空, 检查微任务队列是否还有任务有则执行

    1. 调用栈、微任务队列为空, 宏任务run script执行完毕

  3. 开始轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

3 7 4 1 2 5

题目4:

setTimeout(()=>{
console.log(0)
}, 0) new Promise((resolve, reject) => {
console.log(1)
resolve()
})
.then(
() => {
console.log(2)
new Promise((resolve, reject) => {
console.log(3)
resolve()
})
.then(
() => console.log(4)
)
.then(
() => console.log(5)
)
}
)
.then(
() => console.log(6)
) new Promise((resolve, reject) => {
console.log(7)
resolve()
})
.then(
() => console.log(8)
)
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--执行onResolved中的所有代码, 很重要的地方是此时第一个new Promise的第二个then此时会被放入微任务队列中。 执行完后调用栈为空, 检查微任务队列是否还有任务有则执行

    1. 调用栈、微任务队列为空, 宏任务run script执行完毕

  3. 开始轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

1 7 2 3 8 4 6 5 0

题目5:

console.log('script start')

async function async1() {
await async2()
console.log('async1 end')
}
async function async2() {
console.log('async2 end')
}
async1() setTimeout(function () {
console.log('setTimeout')
}, 0) new Promise(resolve => {
console.log('Promise')
resolve()
})
.then(function () {
console.log('promise1')
})
.then(function () {
console.log('promise2')
}) console.log('script end')
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--执行await后的所有代码, 执行完后调用栈为空, 检查微任务队列是否还有任务有则执行

    1. 调用栈、微任务队列为空, 宏任务run script执行完毕

  3. 开始轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

script start
async2 end
Promise
script end
async1 end
promise1
promise2
setTimeout

终极题1:

<!DOCTYPE html>
<html lang="zh-CN"> <head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<style>
.outer {
width: 200px;
height: 200px;
background-color: orange;
} .inner {
width: 100px;
height: 100px;
background-color: salmon;
}
</style>
</head> <body>
<div class="outer">
<div class="inner"></div>
</div> <script>
var outer = document.querySelector('.outer')
var inner = document.querySelector('.inner') new MutationObserver(function () {
console.log('mutate')
}).observe(outer, {
attributes: true,
}) function onClick() {
console.log('click') setTimeout(function () {
console.log('timeout')
}, 0) Promise.resolve().then(function () {
console.log('promise')
}) outer.setAttribute('data-random', Math.random())
} inner.addEventListener('click', onClick)
outer.addEventListener('click', onClick)
</script>
</body>
</html>
  1. 执行初始化代码

  2. 初始化代码执行完毕, 调用栈为空所以可以开始轮询执行微任务队列的代码

    1. 取出第一个任务到调用栈--打印promise, 执行完后调用栈为空, 检查微任务队列是否还有任务有则执行

    1. 调用栈、微任务队列为空, 因为存在冒泡, 所以以上操作再进行一次

  3. 宏任务run script执行完毕, 调用栈、微任务队列为空可以轮询执行宏任务队列中的下一个任务

  4. 开始轮询执行宏任务队列中的下一个任务

  5. 微任务队列、调用栈为空, 继续轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

click
promise
mutate
click
promise
mutate
timeout
timeout

不同浏览器下的不同结果(如果你的结果在这其中, 也是对的)

这里令人迷惑的点是: outer的冒泡执行为什么比outer的setTimeout先

那是因为:

  • 首先outer的setTimeout是一个宏任务, 它进入宏任务队列时是在了run script的后面
  • inner执行到mutate后run script并没有执行完, 而是还有一个outer.click的冒泡要执行
  • 只有执行完该冒泡后, run script才真正执行完(才可以执行下一个宏任务)

终极题2:

<!DOCTYPE html>
<html lang="zh-CN"> <head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<style>
.outer {
width: 200px;
height: 200px;
background-color: orange;
} .inner {
width: 100px;
height: 100px;
background-color: salmon;
}
</style>
</head> <body>
<div class="outer">
<div class="inner"></div>
</div> <script>
var outer = document.querySelector('.outer')
var inner = document.querySelector('.inner') new MutationObserver(function () {
console.log('mutate')
}).observe(outer, {
attributes: true,
}) function onClick() {
console.log('click') setTimeout(function () {
console.log('timeout')
}, 0) Promise.resolve().then(function () {
console.log('promise')
}) outer.setAttribute('data-random', Math.random())
} inner.addEventListener('click', onClick)
outer.addEventListener('click', onClick)
inner.click() // 模拟点击inner </script>
</body>
</html>
  1. 执行初始化代码, 这里与终极题1不同的地方在于: 终极题1的click是作为回调函数(dispatch), 而这里是直接同步调用的

  2. inner.click执行完毕, inner.click退栈, 由于调用栈并不为空, 所以不能轮询微任务队列, 而是继续执行run script(执行冒泡部分)

    需要注意: 由于outer.click的MutationObserver并未执行所以不会被再次添加进微任务队列中

  3. inner.click退栈, 宏任务run script执行完毕, run script也退栈 调用栈为空, 开始轮询微任务队列

  4. 调用栈、微任务队列为空, 开始轮询执行宏任务队列中的下一个任务

  5. 微任务队列、调用栈为空, 继续轮询执行宏任务队列中的下一个任务

于是这道题最终的结果是:

click
click
promise
mutate
promise
timeout
timeout

参考文章:

一次弄懂Event Loop(彻底解决此类面试问题)

Tasks, microtasks, queues and schedules

从几道题目带你深入理解Event Loop_宏队列_微队列的更多相关文章

  1. hdu 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】(转)

    HDU 动态规划(46道题目)倾情奉献~ [只提供思路与状态转移方程] Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955      背包 ...

  2. Java基础 带你深刻理解自动装箱,拆箱含义

    1.什么是装箱,什么是拆箱装箱:把基本数据类型转换为包装类.拆箱:把包装类转换为基本数据类型.基本数据类型所对应的包装类:int(几个字节4)- Integerbyte(1)- Byteshort(2 ...

  3. C语言超级经典400道题目

    C语言超级经典400道题目 1.C语言程序的基本单位是____ A) 程序行 B) 语句 C) 函数 D) 字符.C.1 2.C语言程序的三种基本结构是____构A.顺序结构,选择结构,循环结 B.递 ...

  4. 带你深入理解STL之Set和Map

    在上一篇博客带你深入理解STL之RBTree中,讲到了STL中关于红黑树的实现,理解起来比较复杂,正所谓前人种树,后人乘凉,RBTree把树都种好了,接下来就该set和map这类关联式容器来" ...

  5. 带你深入理解STL之Stack和Queue

    上一篇博客,带你深入理解STL之Deque容器中详细介绍了deque容器的源码实现方式.结合前面介绍的两个容器vector和list,在使用的过程中,我们确实要知道在什么情况下需要选择恰当的容器来满足 ...

  6. 带你深入理解STL之Vector容器

    C++内置了数组的类型,在使用数组的时候,必须指定数组的长度,一旦配置了就不能改变了,通常我们的做法是:尽量配置一个大的空间,以免不够用,这样做的缺点是比较浪费空间,预估空间不当会引起很多不便. ST ...

  7. 带你深入理解STL之迭代器和Traits技法

    在开始讲迭代器之前,先列举几个例子,由浅入深的来理解一下为什么要设计迭代器. //对于int类的求和函数 int sum(int *a , int n) { int sum = 0 ; for (in ...

  8. 小白欢乐多——记ssctf的几道题目

    小白欢乐多--记ssctf的几道题目 二哥说过来自乌云,回归乌云.Web400来源于此,应当回归于此,有不足的地方欢迎指出. 0x00 Web200 先不急着提web400,让我们先来看看web200 ...

  9. 在 n 道题目中挑选一些使得所有人对题目的掌握情况不超过一半。

    Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quar ...

随机推荐

  1. linux 安装FastFdfs

    一.安装依赖软件和类库(安装前的准备) 依次执行以下命令: yum install gcc-c++ -y yum -y install zlib zlib-devel pcre pcre-devel ...

  2. 一个C#开发编写Java框架的心路历程

    前言 这一篇絮絮叨叨,逻辑不太清晰的编写Java框架的的一个过程,主要描述我作为一个java初学者,在编写Java框架时的一些心得感悟. 因为我是C#的开发者,所以,在编写Java框架时,或多或少会带 ...

  3. WinForm的Socket实现简单的聊天室 IM

    1:什么是Socket 所谓套接字(Socket),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象. 一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制. 从 ...

  4. .net core 和 WPF 开发升讯威在线客服系统【私有化部署免费版】发布

    希望 .net 和 WPF 技术时至今日,还能有一些存在感. 这个项目源于2015年前后,当时开发的初版,我使用了 ASP.NET MVC 做为后端,数据库使用原生 ADO.NET 进行操作.WPF ...

  5. SSH&SSM

    SSH和SSM的区别 SSH是Spring+Struts+Hibernate的缩写,是一种Web应用程序开源框架.框架系统分为四层:表选层.业务逻辑层.数据持久层和模块层.SSM是Spring+Spr ...

  6. Spring笔记(三)

    Spring AOP 一.AOP(概念) 1. 什么是AOP 面向切面编程(方面),利用AOP可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各个部分之间的耦合度降低,提高程序的可重用性,同时提高了 ...

  7. 关于在forEach中使用await的问题

    先说需求,根据数组中的ID值,对每个ID发送请求,获取数据进行操作. 首先肯定考虑用forEach 或者 map对数组进行遍历,然后根据值进行操作,但是请求是个异步操作,forEach又是一个同步操作 ...

  8. 全网最详细的Linux命令系列-iptrad-ng网络流量监测命令

    观察网络流量的工具:IPTRAF 想知道你的Linux系统上网络流量有多大吗?想知道是哪一块网卡承载着网络流量吗?想知道哪一个进程产生了网络流量吗?iptraf可以帮你做到.在最新的Linux rel ...

  9. ThoughtWorks首席咨询师带你一站通关中台

    大家都在谈中台,是当下一个热议的话题,但是我们最关心的两个基本问题还是没有答案.一个是中台的概念,依然是见仁见智,始终没有一个统一的见解:另一个是中台的落地,更是鲜有人谈. 拨开当下有关中台的层层迷雾 ...

  10. Java【IO流、字节流、字符流】

    1.内存是临时存储 Input输入(读取) output输出(输出) 流:数据(字符字节)1个字符=2个字节 1个字节=8个二进制位 输入:把硬盘中的数据读取到内存中 输出:把内存中的数据写入到硬盘中 ...