作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/description/

题目描述

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Example 1:

Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.

Example 2:

Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.

题目大意

给出了一堆股票价格,最多做k次交易,求最大的收益。

解题方法

就是123. Best Time to Buy and Sell Stock III昨天的题,只是把交易2次改成了交易k次。这次题目有个坑,就是给了一个特别大的k,导致构建数组的时候,内存超了。在123题目里也说了,如果k>=N的时候相当于没有限制,题目退化成了不限次数的交易,所以我们直接求今天比昨天高的部分即可。当k<N的时候,我们仍然使用两个变量,全局的收益g和当前天卖出股票的收益l.

以下来自Grandyang的博客

这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j]),

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值后相比,两者之中取较大值,而全局最优比较局部最优和前一天的全局最优。

class Solution(object):
def maxProfit(self, k, prices):
"""
:type k: int
:type prices: List[int]
:rtype: int
"""
if k <= 0 or not prices: return 0
N = len(prices)
if k >= N:
_sum = 0
for i in xrange(1, N):
if prices[i] > prices[i - 1]:
_sum += prices[i] - prices[i - 1]
return _sum
g = [0] * (k + 1)
l = [0] * (k + 1)
for i in xrange(N - 1):
diff = prices[i + 1] - prices[i]
for j in xrange(k, 0, -1):
l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff)
g[j] = max(l[j], g[j])
return g[-1]

日期

2018 年 12 月 1 日 —— 2018年余额不足了

【LeetCode】188. Best Time to Buy and Sell Stock IV 解题报告(Python)的更多相关文章

  1. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. LeetCode 188. Best Time to Buy and Sell Stock IV (stock problem)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. LeetCode 122 Best Time to Buy and Sell Stock II 解题报告

    题目要求 Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  5. 【刷题-LeetCode】188 Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the i-th element is the price of ...

  6. 【LeetCode】Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the ith element is the price of a ...

  7. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  8. LeetCode: Best Time to Buy and Sell Stock II 解题报告

    Best Time to Buy and Sell Stock IIQuestion SolutionSay you have an array for which the ith element i ...

  9. [LeetCode][Java] Best Time to Buy and Sell Stock IV

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

随机推荐

  1. jQuery添加html绑定事件

    jQuery添加html绑定事件 $("#xxx").on("click",".dev",function(){ });

  2. 基于tp5的免费开源企业官网系统

    基于tp5的免费开源企业官网系统 基本功能: 自定义菜单,单页 添加新闻文章前台展示 前台页面自动适配电脑与手机端等.后台模板用的是:AdminLTE 项目放在github上有兴趣开源下载看看 htt ...

  3. 30-Container With Most Water-Leetcode

    Given n non-negative integers a1, a2, -, an, where each represents a point at coordinate (i, ai). n ...

  4. springcloud报Load balancer does not have available server for client: PROVIDER-SERVER

    1.后台报错截图 这个的意思就是:负载均衡服务器中没有这个我自定义的PROVIDER-SERVER.开始我以为是Ribbon的原因,所以去折腾了一下,但是:最后不断往前推到之后发现本质是:在注册中心E ...

  5. SpringBoot Profiles 多环境配置及切换

    目录 前言 默认环境配置 多环境配置 多环境切换 小结 前言 大部分情况下,我们开发的产品应用都会根据不同的目的,支持运行在不同的环境(Profile)下,比如: 开发环境(dev) 测试环境(tes ...

  6. A Child's History of England.49

    But he was shipwrecked in the Adriatic Sea, and was fain [happy, willing] to pass through Germany, u ...

  7. day04 orm操作

    day04 orm操作 昨日内容回顾 小白必会三板斧 request对象方法 静态文件 请求方式 python链接数据库 django链接数据库 小白必会三板斧 HttpResponse :返回前端浏 ...

  8. java中类实现Serializable接口的原因

    背景:一个java中的类只有实现了Serializable接口,它的对象才是可序列化的.如果要序列化某些类的对象,这些类就必须实现Serializable接口.Serializable是一个空接口,没 ...

  9. java中的原子操作类AtomicInteger及其实现原理

    /** * 一,AtomicInteger 是如何实现原子操作的呢? * * 我们先来看一下getAndIncrement的源代码: * public final int getAndIncremen ...

  10. Enumeration遍历http请求参数的一个例子

    Enumeration<String> paraNames=request.getParameterNames(); for(Enumeration e=paraNames;e.hasMo ...