作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/maximum-product-subarray/description/

题目描述

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

题目大意

求连续子数组最大乘积。

解题方法

双重循环

这个题最简单粗暴的方法当然是两重循环啦!遍历每个区间的开始和结束位置,然后求这个区间的积,然后保留最大的积即可。没想到C++直接提交竟然给通过了!说明这个O(N^2)的时间复杂度还是能够接受的。

class Solution {
public:
int maxProduct(vector<int>& nums) {
const int N = nums.size();
int res = INT_MIN;
for (int i = 0; i < N; ++i) {
int cur = 1;
for (int j = i; j < N; ++j) {
if (j == i)
cur = nums[i];
else
cur = cur * nums[j];
res = max(res, cur);
}
}
return res;
}
};

动态规划

如果是连续子数组的和的问题我们肯定能想到虫取法之类的,但是求积就比较麻烦了,因为某个位置可能出现了0或者负数。。当遇到0的时候,整个乘积会变成0;当遇到负数的时候,当前的最大乘积会变成最小乘积,最小乘积会变成最大乘积。

有上面的分析可以看出,必须使用两个数组分别记录以某个位置i结尾的时候的最大乘积和最小乘积了。令最大乘积为f,最小乘积为g。那么有:

  • 当前的最大值等于已知的最大值、最小值和当前值的乘积,当前值,这三个数的最大值。
  • 当前的最小值等于已知的最大值、最小值和当前值的乘积,当前值,这三个数的最小值。
  • 结果是最大值数组中的最大值。

时间复杂度是O(N),空间复杂度是O(N). N是数组大小。超过了87%的提交。

题外话:是不是和股票交易问题很像?

class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = [0] * N
g = [0] * N
f[0] = g[0] = res = nums[0]
for i in range(1, N):
f[i] = max(f[i - 1] * nums[i], nums[i], g[i - 1] * nums[i])
g[i] = min(f[i - 1] * nums[i], nums[i], g[i - 1] * nums[i])
res = max(res, f[i])
return res

这个版本的C++代码如下:

class Solution {
public:
int maxProduct(vector<int>& nums) {
const int N = nums.size();
vector<int> mx(N);
vector<int> mn(N);
int res = mx[0] = mn[0] = nums[0];
for (int i = 1; i < N; ++i) {
mx[i] = max(nums[i], max(mx[i - 1] * nums[i], mn[i - 1] * nums[i]));
mn[i] = min(nums[i], min(mx[i - 1] * nums[i], mn[i - 1] * nums[i]));
res = max(mx[i], res);
}
return res;
}
};

上面的方法使用了数组实现,我们注意到,每次更新只用到了前面的一个值,所以可以使用变量优化空间复杂度。

class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
pre_f, pre_g = f, g
f = max(pre_f * nums[i], nums[i], pre_g * nums[i])
g = min(pre_f * nums[i], nums[i], pre_g * nums[i])
res = max(res, f)
return res

时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了99.9%的提交。

在上面两个做法中,使用求三个数最大、最小的方式来更新状态,确实很暴力。事实上可以使用判断,直接知道怎么优化。当nums[i]为正的时候,那么正常更新。如果nums[i]<=0的时候,需要反向更新。

class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
if nums[i] > 0:
f, g = max(f * nums[i], nums[i]), min(g * nums[i], nums[i])
else:
f, g = max(g * nums[i], nums[i]), min(f * nums[i], nums[i])
res = max(res, f)
return res

时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了47%的提交。

在上面的做法中可以看出来,两个更新公式里面f和g的位置是互换的,所以可以提前判断nums[i]的正负进行提前的互换。

class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
if nums[i] < 0:
f, g = g, f
f, g = max(f * nums[i], nums[i]), min(g * nums[i], nums[i])
res = max(res, f)
return res

时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了47%的提交。

参考资料

http://www.cnblogs.com/grandyang/p/4028713.html

日期

2018 年 10 月 20 日 —— 10月剩余的时间又不多了

【LeetCode】152. Maximum Product Subarray 解题报告(Python & C++)的更多相关文章

  1. 求连续最大子序列积 - leetcode. 152 Maximum Product Subarray

    题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们 ...

  2. [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  3. Java for LeetCode 152 Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. LeetCode 152. Maximum Product Subarray (最大乘积子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  5. LeetCode Maximum Product Subarray 解题报告

    LeetCode 新题又更新了.求:最大子数组乘积. https://oj.leetcode.com/problems/maximum-product-subarray/ 题目分析:求一个数组,连续子 ...

  6. leetcode 152. Maximum Product Subarray --------- java

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. C#解leetcode 152. Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. [leetcode]152. Maximum Product Subarray最大乘积子数组

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  9. Leetcode#152 Maximum Product Subarray

    原题地址 简单动态规划,跟最大子串和类似. 一维状态空间可以经过压缩变成常数空间. 代码: int maxProduct(int A[], int n) { ) ; ]; ]; ]; ; i > ...

随机推荐

  1. javaSE高级篇2 — 流技术 — 更新完毕

    1.先认识一个类----File类 前言:IO相关的一些常识 I / O----输入输出 I     输入     input 0    输出     output I / o 按数据的流动方向来分- ...

  2. flink-----实时项目---day06-------1. 获取窗口迟到的数据 2.双流join(inner join和left join(有点小问题)) 3 订单Join案例(订单数据接入到kafka,订单数据的join实现,订单数据和迟到数据join的实现)

    1. 获取窗口迟到的数据 主要流程就是给迟到的数据打上标签,然后使用相应窗口流的实例调用sideOutputLateData(lateDataTag),从而获得窗口迟到的数据,进而进行相关的计算,具体 ...

  3. Could not get a resource from the pool

    redis报错Could not get a resource from the pool情况是:1.可以连接redis2.可以keys *查看数据,但是发现key少了好多(其实原因就是大量的key过 ...

  4. android studio 使用 aidl(二)异步回调

    基础使用请移步 android studio 使用 aidl (一) 首先建立在server端建立两个aidl文件 ITaskCallback.aidl 用于存放要回调client端的方法 // IT ...

  5. Win7部署Yapi

    1.安装node 下载地址:https://nodejs.org/zh-cn/download/ (win7要下载v12.16之前的版本) 安装目录在D:\nodejs,配置地址(文件目录不能有特殊符 ...

  6. 转 android开发笔记之handler+Runnable的一个巧妙应用

    本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...

  7. 【分布式】ZooKeeper权限控制之ACL(Access Control List)访问控制列表

    zk做为分布式架构中的重要中间件,通常会在上面以节点的方式存储一些关键信息,默认情况下,所有应用都可以读写任何节点,在复杂的应用中,这不太安全,ZK通过ACL机制来解决访问权限问题,详见官网文档:ht ...

  8. When should we write our own assignment operator in C++?

    The answer is same as Copy Constructor. If a class doesn't contain pointers, then there is no need t ...

  9. Camera、音频录制与Vitamio框架

    一.Camera 1.概述 Android框架包含了各种相机哥相机功能的支持,是你可以在应用中捕获图像和视频. 在应用能使用设备上的相机之前,先想一想将来会如何使用此硬件: (1)Camera  应该 ...

  10. sql优化的8种方式

    1.设置索引. MySQL索引操作:给表列创建索引: 建表时创建索引: create table t(id int,name varchar(20),index idx_name (name)); 给 ...