【LeetCode】152. Maximum Product Subarray 解题报告(Python & C++)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/maximum-product-subarray/description/
题目描述
Given an integer array nums
, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
题目大意
求连续子数组最大乘积。
解题方法
双重循环
这个题最简单粗暴的方法当然是两重循环啦!遍历每个区间的开始和结束位置,然后求这个区间的积,然后保留最大的积即可。没想到C++直接提交竟然给通过了!说明这个O(N^2)的时间复杂度还是能够接受的。
class Solution {
public:
int maxProduct(vector<int>& nums) {
const int N = nums.size();
int res = INT_MIN;
for (int i = 0; i < N; ++i) {
int cur = 1;
for (int j = i; j < N; ++j) {
if (j == i)
cur = nums[i];
else
cur = cur * nums[j];
res = max(res, cur);
}
}
return res;
}
};
动态规划
如果是连续子数组的和的问题我们肯定能想到虫取法之类的,但是求积就比较麻烦了,因为某个位置可能出现了0或者负数。。当遇到0的时候,整个乘积会变成0;当遇到负数的时候,当前的最大乘积会变成最小乘积,最小乘积会变成最大乘积。
有上面的分析可以看出,必须使用两个数组分别记录以某个位置i结尾的时候的最大乘积和最小乘积了。令最大乘积为f,最小乘积为g。那么有:
- 当前的最大值等于已知的最大值、最小值和当前值的乘积,当前值,这三个数的最大值。
- 当前的最小值等于已知的最大值、最小值和当前值的乘积,当前值,这三个数的最小值。
- 结果是最大值数组中的最大值。
时间复杂度是O(N),空间复杂度是O(N). N是数组大小。超过了87%的提交。
题外话:是不是和股票交易问题很像?
class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = [0] * N
g = [0] * N
f[0] = g[0] = res = nums[0]
for i in range(1, N):
f[i] = max(f[i - 1] * nums[i], nums[i], g[i - 1] * nums[i])
g[i] = min(f[i - 1] * nums[i], nums[i], g[i - 1] * nums[i])
res = max(res, f[i])
return res
这个版本的C++代码如下:
class Solution {
public:
int maxProduct(vector<int>& nums) {
const int N = nums.size();
vector<int> mx(N);
vector<int> mn(N);
int res = mx[0] = mn[0] = nums[0];
for (int i = 1; i < N; ++i) {
mx[i] = max(nums[i], max(mx[i - 1] * nums[i], mn[i - 1] * nums[i]));
mn[i] = min(nums[i], min(mx[i - 1] * nums[i], mn[i - 1] * nums[i]));
res = max(mx[i], res);
}
return res;
}
};
上面的方法使用了数组实现,我们注意到,每次更新只用到了前面的一个值,所以可以使用变量优化空间复杂度。
class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
pre_f, pre_g = f, g
f = max(pre_f * nums[i], nums[i], pre_g * nums[i])
g = min(pre_f * nums[i], nums[i], pre_g * nums[i])
res = max(res, f)
return res
时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了99.9%的提交。
在上面两个做法中,使用求三个数最大、最小的方式来更新状态,确实很暴力。事实上可以使用判断,直接知道怎么优化。当nums[i]为正的时候,那么正常更新。如果nums[i]<=0的时候,需要反向更新。
class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
if nums[i] > 0:
f, g = max(f * nums[i], nums[i]), min(g * nums[i], nums[i])
else:
f, g = max(g * nums[i], nums[i]), min(f * nums[i], nums[i])
res = max(res, f)
return res
时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了47%的提交。
在上面的做法中可以看出来,两个更新公式里面f和g的位置是互换的,所以可以提前判断nums[i]的正负进行提前的互换。
class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
f = g = res = nums[0]
for i in range(1, N):
if nums[i] < 0:
f, g = g, f
f, g = max(f * nums[i], nums[i]), min(g * nums[i], nums[i])
res = max(res, f)
return res
时间复杂度是O(N),空间复杂度是O(1).N是数组大小。超过了47%的提交。
参考资料
http://www.cnblogs.com/grandyang/p/4028713.html
日期
2018 年 10 月 20 日 —— 10月剩余的时间又不多了
【LeetCode】152. Maximum Product Subarray 解题报告(Python & C++)的更多相关文章
- 求连续最大子序列积 - leetcode. 152 Maximum Product Subarray
题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们 ...
- [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- Java for LeetCode 152 Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode 152. Maximum Product Subarray (最大乘积子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode Maximum Product Subarray 解题报告
LeetCode 新题又更新了.求:最大子数组乘积. https://oj.leetcode.com/problems/maximum-product-subarray/ 题目分析:求一个数组,连续子 ...
- leetcode 152. Maximum Product Subarray --------- java
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- C#解leetcode 152. Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- [leetcode]152. Maximum Product Subarray最大乘积子数组
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- Leetcode#152 Maximum Product Subarray
原题地址 简单动态规划,跟最大子串和类似. 一维状态空间可以经过压缩变成常数空间. 代码: int maxProduct(int A[], int n) { ) ; ]; ]; ]; ; i > ...
随机推荐
- linux 两服务器之间的文件传输scp
Linux scp 命令用于 Linux 之间复制文件和目录. scp 是 secure copy 的缩写, scp 是 linux 系统下基于 ssh 登陆进行安全的远程文件拷贝命令. scp 是加 ...
- rabbit mq的安装
rabbit mq的安装分为window的安装和linux的安装. window的安装: 1,需要安装 安装Erlang 下载地址http://www.erlang.org/downloads 我选 ...
- 微信小程序扫描普通二维码打开小程序的方法
很久没有写博客了,之前换了一份工作,很久没有做Android开发了,现在转做前端开发了,记录一下遇到的问题及解决的方法. 最近做微信小程序开发,遇到一个需求,后台管理系统生成的问卷和投票会有一个二维码 ...
- 33、搜索旋转排序数组 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(33)搜索旋转排序数组 一 题目描述! 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 & ...
- sed 修改文件
总结 正确的修改进文件命令(替换文件内容):sed -i "s#machangwei#mcw#g" mcw.txt 正确的修改追加进文件命令(追加文件内容):sed -i &quo ...
- 日常Java 2021/9/26 (二柱升级版)
package m; import java.util.Scanner;import java.util.Random; public class di_er { static int number= ...
- 看动画学算法之:二叉搜索树BST
目录 简介 BST的基本性质 BST的构建 BST的搜索 BST的插入 BST的删除 简介 树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构. 树是由很多个节点组 ...
- java web 限制同一个用户在不同处登入
用到的技术:map集合,sessionListener监听器,Fiter过滤器. 实现思路: 一.利用一个全局的map集合来保存每个用户sessionID的值的一个集合.一个用户对应一个session ...
- JDBC(1):JDBC介绍
一,JDBC介绍 SUN公司为了简化.统一对数据库的操作,定义了一套Java操作数据库的规范(接口),称之为JDBC.这套接口由数据库厂商去实现,这样,开发人员只需要学习jdbc接口,并通过jdbc加 ...
- Linux:expr、let、for、while、until、shift、if、case、break、continue、函数、select
1.expr计算整数变量值 格式 :expr arg 例子:计算(2+3)×4的值 1.分步计算,即先计算2+3,再对其和乘4 s=`expr 2 + 3` expr $s \* 4 2.一步完成计算 ...