\(\mathcal{Description}\)

  Link.

  定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当:

  • 除去最深的所有叶子后,\(T\) 是满的;

  • 对于 \(T\) 中任意结点 \(r\),若 \(r\) 存在左儿子 \(u\),则 \(r\not\equiv u\pmod2\);

  • 若 \(r\) 存在右儿子 \(v\),则 \(r\equiv v\pmod2\);

  给定 \(n\),求 好树 数量。答案对 \(998244353\) 取模。

  \(\require{cancel} \cancel{n\le10^6}~n\le10^{10^6}\)。

\(\mathcal{Solution}\)

  分析一下含有 \(n\) 个结点的 好树 的性质:

  1. 好树 的子树是 好树

  2. 树根 \(r\) 有 \(r\equiv n\pmod2\)。因为从根一直走右儿子奇偶性不变。

  3. 当 \(n>1\),好树 不满。若满,最大值和次大值必为右儿子-父亲关系,不满足定义。

  4. 由 3.,当 \(n>2\),好树 树根的左右子树的最大满层相同。

  我们这样断言:最大满层深度为 \(h\) 的 好树 存在且仅存在两个,且它们的大小之差为 \(1\)。

  给出证明。设含 \(n\) 个结点的 好树 有 \(f(n)\) 个,那么 \(f(1)=f(2)=1\),它们最大满层深度均为 \(1\)。归纳 \(n>2\) 的情形:

  取一棵含 \(n\) 个点的 好树 \(T\),其树根为 \(r\),左右儿子为 \(u,v\),最大满层深度为 \(h\)。

  由性质 1.,子树 \(u\) 和子树 \(v\) 是好树;

  由性质 3.,子树 \(u\) 和子树 \(v\) 不满;

  由假设,\(T\) 为好树,子树 \(u\) 和子树 \(v\) 最大满层相同。那么可以对这两棵子树进行归纳。

  • 若 \(2\not\mid n\),

    可知子树 \(u\),子树 \(v\) 大小奇偶性相同,由性质 4. 与归纳假设,子树 \(u\) 和子树 \(v\) 的大小相等,且均为偶数,继而有

    \[ f(n)=f^2\left(\frac{n-1}{2}\right)~~~~(n=4k+1,k\in\mathbb N^*).
    \]
  • 若 \(2\mid n\),

    可知子树 \(u\),子树 \(v\) 大小奇偶性不同,由归纳假设,子树 \(u\) 和子树 \(v\) 大小相差 \(1\),继而有

    \[ f(n)=f\left(\frac{n}{2}-1\right)f\left(\frac{n}{2}\right).
    \]

    (注意左右子树不能交换,所以只有一种放法。)

  综上,不难发现 \(f(n)\) 在归纳条件下至多为 \(1\)。我们只需要证明存在某对使得 \(T\) 最大满层深度为 \(h\) 的 \(n_0\) 和 \(n_0+1\),使得 \(f(n_0)=f(n_0+1)=1\)。

  构造,设当 \(h'=h-1\) 时已有 \(f(n_0')=f(n_0'+1)=1\),那么

  • 若 \(2\mid n_0\),有 \(f(2n_0)=f(2n_0+1)=1\);

  • 若 \(2\not\mid n_0\),有 \(f(2n_0+2)=f(2n_0+1)=1\)。

  综上,归纳可行,原命题成立。 \(\square\)

  利用最后一步的构造方法,我们可以 \(\mathcal O(\log n)\) 地求得所有 \(n_0\le n,f(n_0)=1\) 的 \(n_0\)。当然也能以同样复杂度判断 \(f(n)\) 是否为 \(1\)。


  正确解题姿势:写 \(\mathcal O(n^2)\) DP,打表秒出规律。

\(\mathcal{Code}\)

  Subtask12 即打表代码。

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 5e6;
int n, M;
bool ans[MAXN + 5]; inline int imin( const int u, const int v ) { return u < v ? u : v; }
inline int imax( const int u, const int v ) { return u < v ? v : u; }
inline int mul( const int u, const int v ) { return 1ll * u * v % M; }
inline void addeq( int& u, const int v ) { ( u += v ) >= M && ( u -= M ); } namespace Subtask12 { int bitw[MAXN + 5], f[MAXN + 5]; inline void main() {
f[0] = f[1] = 1, bitw[0] = -1;
rep ( i, 2, n ) {
bitw[i] = bitw[i >> 1] + 1;
rep ( j, 1, i ) {
if ( ( i & 1 ) == ( j & 1 )
&& imin( bitw[j], bitw[i - j + 1] ) + 1 >= bitw[i]
&& imax( bitw[j - 1], bitw[i - j] ) + 1 == bitw[i] ) {
// printf( "(%d,%d)->%d\n", j - 1, i - j, i );
addeq( f[i], mul( f[j - 1], f[i - j] ) );
}
}
if ( f[i] ) assert( f[i] == 1 ), printf( "%d\n", i );
}
} } // namespace Subtask12. int main() {
freopen( "tree.in", "r", stdin );
freopen( "tree.out", "w", stdout ); scanf( "%d %d", &n, &M ); for ( int i = 2, op = 1; i <= MAXN + 1; ) {
ans[i] = ans[i - 1] = true;
i = i << 1 | op, op ^= 1;
} putchar( ans[n] ^ '0' ), putchar( '\n' );
return 0;
}

Solution -「CF 1237E」Balanced Binary Search Trees的更多相关文章

  1. Codeforces 1237E Perfect Balanced Binary Search Tree

    题目链接 Observations 含有 $n$ 个点且 key(以下也称 key 为「权值」)是 1 到 $n$ 的 BST 具有下列性质: 若 $k$ 是一个非根叶子且是个左儿子,则 $k$ 的父 ...

  2. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  3. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  4. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  5. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  6. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. Linux系统使用SSH登录之前如何显示横幅消息

    OpenSSH有一个名为Banner的内置选项.在允许身份验证之前,将指定文件的内容发送给远程用户.如果Banner选项设置为none,那么在ssh登录时就不会显示任何Banner消息.默认情况下,不 ...

  2. Golang实现集合(set)

    package set package set import ( "bytes" "fmt" "sync" ) type Set struc ...

  3. Feign的应用

    一.定义 可以把Rest的请求进行隐藏,伪装成类似SpringMVC的Controller一样 它集成了ribbon.hystrix.eureka组件 Feign的日志级别需要自定义,因为日志是单独的 ...

  4. css编写规则BEM

    简单来说,格式如下: .block { /* styles */ } .block__element { /* styles */ } .block--modifier { /* styles */ ...

  5. Sentry 开发者贡献指南 - Feature Flag

    功能 flag 在 Sentry 的代码库中声明. 对于自托管用户,这些标志然后通过 sentry.conf.py 进行配置. 对于 Sentry 的 SaaS 部署,Flagr 用于在生产中配置标志 ...

  6. 使用PostGIS完成两点间的河流轨迹及流经长度的计算

    基础准备工作 1.PostGIS 的安装 在安装PostGIS前首先必须安装PostgreSQL,然后再安装好的Stack Builder中选择安装PostGIS组件.具体安装步骤可参照 PostGI ...

  7. python中grpc配置asyncio使用

    python中grpc配置asyncio使用 安装grpclib pip3 install grpclib protoc编译.proto文件,生成源码文件 python -m grpc_tools.p ...

  8. golang中math常见数据数学运算

    package main import ( "fmt" "math" ) func main() { fmt.Println(math.Abs(-19)) // ...

  9. 多线程-创建线程第二种方式-实现Runnable接口-细节和好处

    1 package multithread2; 2 3 /* 4 * 创建线程的第一种方法:继承Thread类 5 * 6 * 创建线程的第二种方式:实现Runnable接口 7 * 8 * 1,定义 ...

  10. 通过kubeadm工具部署k8s集群

    1.概述 kubeadm是一工具箱,通过kubeadm工具,可以快速的创建一个最小的.可用的,并且符合最佳实践的k8s集群. 本文档介绍如何通过kubeadm工具快速部署一个k8s集群. 2.主机规划 ...