\(\mathcal{Description}\)

  Link.

  给定数列 \(\{a_n\}\),求排列 \(\{p_n\}\) 的个数,使得 \((\forall i\in[1,n))(a_{p_i}a_{p_{i+1}}\not=k^2)\),其中 \(k\in\mathbb N\)。

\(\mathcal{Solution}\)

  首先消掉每个数的平方因子,那么限制条件转化为 \(a_{p_i}\not=a_{p_{i+1}}\),我们可以把相等的数放在一个桶里。设桶的大小 \(s_1,s_2,\cdots,s_m\)。

  若直接计数,难免需要考虑用过的 \(a\) 的信息。引入容斥,令 \(f_i\) 表示至少有 \(i\) 对数相邻数相等。则答案为:

\[\sum_{i=0}^{n-1}(-1)^if_i
\]

  再用 DP 求 \(f\),令 \(g(i,j)\) 表示把前 \(i\) 个桶分为 \(j\) 块,保证块内元素相同的方案数。转移考虑第 \(i\) 个桶的贡献:

\[g(i,j)=\sum_{k=1}^{\min\{s_i,j\}}\frac{g(i-1,j-k)\binom{s_m-1}{k-1}s_m!}{k!}
\]

  比较显然嘛,其中 \(\binom{s_m-1}{k-1}\) 是隔板法划分第 \(i\) 个桶,\(s_m!\) 表示元素有序,\(k!\) 表示块无序。

  最后,找到 \(f\) 和 \(g\) 的关系:、

\[f_{n-k}=g(m,k)k!,~k=1,2,\dots,n
\]

  可以发现 \(g(m,k)\) 实质上就是“至多有 \(k-1\) 个数不相邻”的方案数。

  暴力求这两个东西就好,复杂度 \(\mathcal O(n^3)\)。

\(\mathcal{Code}\)

#include <map>
#include <cstdio> const int MAXN = 300, MOD = 1e9 + 7;
int n, fac[MAXN + 5], ifac[MAXN + 5], f[MAXN + 5], g[MAXN + 5][MAXN + 5];
std::map<int, int> num; inline void addeq ( int& a, const int b ) { if ( ( a += b ) >= MOD ) a -= MOD; } inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline void init ( const int n ) {
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
} inline int C ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
} int main () {
scanf ( "%d", &n ), init ( n );
for ( int i = 1, a; i <= n; ++ i ) {
scanf ( "%d", &a );
for ( int j = 2; j * j <= a; ++ j ) for ( ; ! ( a % ( j * j ) ); a /= j * j );
++ num[a];
}
int indx = 0, las = 0;
g[0][0] = 1;
for ( auto p: num ) {
++ indx, las += p.second;
for ( int j = 1; j <= las; ++ j ) {
int& cur = g[indx][j];
for ( int k = 1; k <= j && k <= p.second; ++ k ) {
addeq ( cur, 1ll * g[indx - 1][j - k]
* C ( p.second - 1, k - 1 ) % MOD * fac[p.second] % MOD * ifac[k] % MOD );
}
}
}
for ( int i = 1; i <= n; ++ i ) f[n - i] = 1ll * g[indx][i] * fac[i] % MOD;
int ans = 0;
for ( int i = 0; i < n; ++ i ) addeq ( ans, ( i & 1 ? MOD - 1ll : 1ll ) * f[i] % MOD );
printf ( "%d\n", ans );
return 0;
}

Solution -「CF 840C」On the Bench的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. Tomcat8/9的catalina.out中文乱码问题解决

    OS: Red Hat Enterprise Linux Server release 7.8 (Maipo) Tomcat: 9 中文显示为???问号 在$CATALINA_HOME/conf下的l ...

  2. tomcat启动卡在了 At least one JAR was scanned for TLDs yet contained no TLDs 的根本原因与解决办法

    1.前言 有时候服务器开启时启动不了,卡在了 org.apache.jasper.servlet.TldScanner.scanJars At least one JAR was scanned fo ...

  3. JS 利用新浪接口通过IP地址获取当前所在城市

    <html xmlns="http://www.w3.org/1999/xhtml"><head runat="server">< ...

  4. react将HTML字符串解析为HTML标签

    当后台返回的数据是字符串html的话,我们可以利用dangerouslySetInnerHTML属性来把字符串转换成html标签 function showhtml(htmlString){ var ...

  5. Linux系统管理学习实训任务书

    1.<Linux系统管理实训任务一之搭建实验基础环境> https://www.toutiao.com/i6763578305091207694/ 2.<Linux系统管理实训任务一 ...

  6. 【Java常用类】SimpleDateFormat

    文章目录 SimpleDateFormat 默认构造器实例化对象 默认构造器的格式化 带参构造器实例化对象 带参构造器的格式化 自定义格式 解析 SimpleDateFormat 默认构造器实例化对象 ...

  7. Selenium_python自动化跨浏览器执行测试

    Selenium_python自动化跨浏览器执行测试(简单多线程案例)  转:https://www.cnblogs.com/dong-c/p/8976746.html 跨浏览器测试是功能测试的一个分 ...

  8. Json Schema 是什么?

    本文地址:Json Schema 是什么? 简单说,Json Schema 其实就是一个标准的 Json 串,它以一个 Json 串来描述我们需要的数据规范,并且支持注释以及验证 Json 文档,即我 ...

  9. Android官方文档翻译 十五 3.3Supporting Different Platform Versions

    Supporting Different Platform Versions 支持不同的平台版本 This lesson teaches you to 这节课教给你 Specify Minimum a ...

  10. 小程序onShareAppMessage有点迷

    小程序遇到的问题 起因 目前项目需求是分享时携带参数去进行裂变,但是在查看微信文档后发现有onShareAppMessage这个页面处理事件可以使用.事件可以使用return一个Object,用于自定 ...