各种张量初始化

创建特殊类型的tensor

a = torch.FloatTensor(2,3)
a = torch.DoubleTensor(2,3)
...

设置pytorch中tensor的默认类型

torch.set_default_tensor_type(torch.DoubleTensor)

更改tensor类型

a.float()

各种常用初始化

torch.randn_like()

torch.rand(3,3)   #创建 0-1 (3,3)矩阵

torch.randn(3,3)  #创建 -1-1 (3,3)矩阵

torch.randint(1,10,[2,2])  #创建 1-10 (2,2) int型矩阵

按照不同的均值和方差进行初始化

torch.normal(mean=torch.full([20],0),std=torch.arange(0,1,0.1))

按照间隔初始化

torch.linspace(0,10,step=3)

torch.arange(1,10,5)

创建单位矩阵

torch.eye(4,4)

创建打乱的数列

torch.randperm(10)

返回tensor元素个数

torch.numel(torch.rand(2,2))

维度操作

矩阵拼接

torch.cat((x,x),0)
torch.stack((x,x),0) #与cat不同的是,stack在拼接的时候,要增加一个维度

矩阵拆分

chuck直接按照数量来拆分,输入N就拆分成N个

torch.chunk(a,N,dim)

split的两种用法,第一种是输入一个数字,这样就会拆分成这个总维度/数字个维度,第二个是如输入一个列表,会按照列表指定的维度进行拆分

torch.split(a,[1,2],dim)

矩阵选取

在某个维度上选择连续的N 列或者行

torch.narrow(dim,index,size)

选择一个维度dim,从index开始取size个列或者行

a.index_select(dim, list)

各种选取

a[ : , 1:10,  ::2 , 1:10:2]

矩阵打平后选取

torch.take( tensor , list)

维度变化

a.view(1,5)
a.reshape(1,5)

维度减少和增加

只有一个维度的时候,就是0在前面插入,-1或1在后面插入,可以把list当成是0.5维度

a.unsqueeze(1)
a.squeeze(1)

维度扩张

a.expand()

维度扩展expand,注意这里的维度只能由1扩张成N,其他情况下是不能扩张的,另外维度不变的时候也可以用-1代替

a.repead()

另外一种方式是使用repeat函数,repeat表示将之前的维度复制多少次,通过复制来进行扩张

维度交换

transpose(2,3)  # 交换两个维度
permute(4,2,1,3) # 交换多个维度

数学运算

基础运算

其中加减除法都可以使用运算符直接计算,乘法需要额外注意两种不同的乘法,其中:

mul或者*是矩阵对应元素相乘

mm是针对于二维的矩阵正常乘法

matmul是针对任意维度矩阵的正常乘法,@是其符号重载

数字近似

floor() 向下取整

ceil() 向上取整

trunc() 保留整数

frac() 保留小数

数值裁剪

clamp(min)

clamp(min,max) #在这个阈值之外的都变成阈值

累乘

prod()

线性代数相关

trace           #矩阵的迹

diag            #获取主对角线元素

triu/tril       #获取上下三角矩阵

t               #转置

dot/cross       #内积与外积

其他

Numpy Tensor 互相转换

np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()

类型判断

isinstance(a,torch.FloatTensor)

广播

什么时候可以使用广播,广播将从最后一个维度开始,从后往前开始匹配,当一个对象的维度是1或者与另一个对象的维度大小一样的时候,可以匹配上,另外,如果一个对象的维度少于另外一个维度的对象,只要从后往前开始的维度匹配,那么就可以使用广播。

例如

(1,2,3,4) 和 (2,3,4) or (1,2,3,4) 可以广播

(1,2,3,4) 和 (1,1,1) or (1,1,1,1) 可以广播

topk

topk可以帮助返回在某一维度上最大的k个值以及下标,只需要将largest=False,就可以返回最小的k个值

where条件选择

根据条件是否成立,选择矩阵X或者矩阵Y中的元素

where(condition > 0.5 , X , Y )

gather

本质就是在查表,第一个参数是表格,第二个是维度,第三个是要查询的索引

操作就是,在inpu中选择维度dim,然后根据index编号,读取input中的元素

torch.gather(input,dim,index,out=None) 

Pytorch系列:(一)常用基础操作的更多相关文章

  1. Pytorch系列之常用基础操作

    各种张量初始化 创建特殊类型的tensor a = torch.FloatTensor(2,3) a = torch.DoubleTensor(2,3) ... 设置pytorch中tensor的默认 ...

  2. Docker系列之常用命令操作手册

    目录 1.安装虚拟机 2.安装Docker 3.Docker镜像操作 4.Docker容器操作 Docker系列之常用命令操作手册 继上一篇博客Docker系列之原理简单介绍之后,本博客对常用的Doc ...

  3. 《Genesis-3D开源游戏引擎-官方录制系列视频教程:基础操作篇》

    注:本系列教程仅针对引擎编辑器:v1.2.2及以下版本 G3D基础操作   第一课<G3D编辑器初探> G3D编辑器介绍,依托于一个复杂场景,讲解了场景视图及其基本操作,属性面板和工具栏的 ...

  4. Mysql常用基础操作(备忘录)

    常常忘记mysql的一些命令行操作,甚至于说,比较复杂的sql格式记不住或忘记了,也可能根本不会考虑去记,因此,做一下汇总,当下次出现恍惚时不至于去百度挨个找,有时就是记不起来,但是只要给点药引子,立 ...

  5. Elasticsearch学习系列二(基础操作)

    本文将分为3块讲解Es的基础操作.分别为:索引(index).映射(mapping).文档(document). 索引操作 创建索引库 语法: PUT /索引名称{ "settings&qu ...

  6. C# 数据操作系列 - 1. SQL基础操作

    0.前言 前篇介绍了一些数据库的基本概念和以及一些常见的数据库,让我们对数据库有了一个初步的认识.这一篇我们将继续为C#数据操作的基础填上一个空白-SQL语句. SQL(Structured Quer ...

  7. CentOS7 常用基础操作

    系统目录结构了解 CentOS系统中没有磁盘的概念,一切皆文件,/目录下的的一个个文件夹目录就相当于磁盘了,这里简单记录几个常用的目录以及对应的作用: dev:Linux一切皆文件,包括硬件也进行了文 ...

  8. SPSS常用基础操作(3)——对数据资料进行整理

    在实际工作中,往往需要对取得的数据资料进行整理,使其满足特定的分析需求,下面介绍SPSS在资料整理方面的一些功能. 1.加权个案加权个案是指给不同的个案赋予不同的权重,以改变该个案在分析中的重要性.为 ...

  9. SPSS常用基础操作(2)——连续变量离散化

    首先说一下什么是离散化以及连续变量离散化的必要性. 离散化是把无限空间中无限的个体映射到有限的空间中去,通俗点讲就是把连续型数据切分为若干“段”,也称bin,离散化在数据分析中特别是数据挖掘中被普遍采 ...

随机推荐

  1. Windows定时重新启动(适用于server 2012 r2)

    直接看链接吧:https://jingyan.baidu.com/article/2d5afd69dd8e9d85a2e28eb7.html 开始菜单,找到"计划任务程序"; 2 ...

  2. 微信小程序:block标签

    代码中存在block标签,但是渲染的时候会移除掉. 例子: 如果将view改为block: 当你要渲染某些数据时,如果不想额外的加一层外边的标签,此时可以使用block标签来进行占位.

  3. spring boot +dubbo 踩坑记录

    今天初次搭建spring boot +duboo的demo.记录一下踩坑记录. 首先搭建3个小demo,一个maven项目,两个spring boot (服务提供者和服务消费者)项目. 两 sprin ...

  4. Nginx解析漏洞复现以及哥斯拉连接Webshell实践

    Nginx解析漏洞复现以及哥斯拉连接Webshell实践 目录 1. 环境 2. 过程 2.1 vulhub镜像拉取 2.2 漏洞利用 2.3 webshell上传 2.4 哥斯拉Webshell连接 ...

  5. EurekaServer源码分析

    Eureka Server功能 接受服务注册 接受服务心跳 服务剔除 服务下线 集群同步 获取注册表中服务实例信息 需要注意的是,Eureka Server同时也是一个Eureka Client,在不 ...

  6. 设计模式之工厂方法模式(Factory Method Pattern)

    一.工厂方法模式的诞生 在读这篇文章之前,我先推荐大家读<设计模式之简单工厂模式(Simple Factory Pattern)>这篇文档.工厂方法模式是针对简单工厂模式中违反开闭原则的不 ...

  7. 理解函数式编程中的函数组合--Monoids(二)

    使用函数式语言来建立领域模型--类型组合 理解函数式编程语言中的组合--前言(一) 理解函数式编程中的函数组合--Monoids(二) 继上篇文章引出<范畴论>之后,我准备通过几篇文章,来 ...

  8. yolo训练数据集

    最近了解了下yolov3的训练数据集部分,总结了以下操作步骤:(基于pytorch框架,请预先装好pytorch的相关组件) 1.下载ImageLabel软件对图片进行兴趣区域标记,每张图片对应一个x ...

  9. flutter简易教程

    跟Java等很多语言不同的是,Dart没有public protected private等关键字,如果某个变量以下划线 _ 开头,代表这个变量在库中是私有的.Dart中变量可以以字母或下划线开头,后 ...

  10. Python接口自动化实现

    一.代码结构: 二.接口签名实现: 1. 设所有发送的数据集合为M,将集合M内非空参数值的参数按照[参数名+"="+参数值]的ASCII码从小到大排序(字典序),然后按拼接key1 ...