wqs二分 学习笔记
wqs二分学习笔记
wqs二分适用题目及理论分析
wqs二分可以用来解决这类题目:
给你一个强制要求,例如必须\(n\)条白边,或者划分成\(n\)段之类的,然后让你求出最大(小)值。但是需要满足图像是个凸包。
这里讲一下它的原理。假设我们现在需要解决的问题是求分\(x\)段的最小花费。我们假设对于每个\(x\)它的最小花费\(f(x)\)的图像长成这个样子:

当然,这只是个大概图像。
我们假设拿一条斜率为\(k\)的直线去切它,我们假设切到的截距最大值为\(g(k)\),使截距最大点为\(n\),那么图像大概长成这个样子。

我们显然可以得到一个式子:
\]
\]
于是,我们只需要知道\(g(k)\)和\(n\)就可以求出\(f(n)\)。
我们观察\(g(k)\)的式子,发现其实就等价于每分一段贡献在原有的基础上少\(k\)(对于这个问题而言),于是我们可以忽略段数限制,直接做\(\texttt{dp}\),就可以找到最小截距和\(n\)。
我们为了满足恰好分成\(x\)段的要求,如果我们当前的\(n\)小了,我们就应该把\(k\)变小,反之亦凡,于是我们就可以使用二分查找到合适的\(k\)使得\(n=x\)从而计算出\(f(x)\)了。(这个应该很显然吧)
(所以谁能告诉我为什么可以不用二分小数啊???)
例题讲解
\(\text {The 1st}\)
题目描述
给你一个有\(n\)个数的数列,要求你分成\(m\)段,每一段的贡献为\((\sum a_i+1)^2\),求出最小贡献和。
解题思路
真的很经典(虽然最经典还是Tree I)
如果没有恰好分成\(m\)段,我们可以轻易地列出\(\texttt{dp}\)式,即:
\]
其中\(pre[i]=\sum_{j=1}^{i} a_j\)。
现在有了分成\(m\)段的条件,我们发现只需要说明这是个凸函数就可以使用\(\texttt{wqs}\)二分了。这个感性证明一下就好了。然后使用斜率优化就可以做到\(\Theta(n\log w)\)。其中\(w\)是值域。
\(\text {Code}\)
\(\text {The 2ed}\)
题目描述
给定一棵\(n\)个点的数,再给定\(k\),求出树上不相交的\(k+1\)条链的权值最大和。需要注意的是,链是可以在树上拐个弯的。
解题思路
首先很显然这是个上凸函数。于是我们可以考虑使用\(\texttt{wqs}\)二分。为了方便,后面设\(v\)为\(\texttt{wqs}\)二分中的斜率。
考虑不考虑段数的\(dp\),我们可以设\(dp[u][0/1/2]\),表示\(u\)这个点与儿子之间有\(0/1/2\)条连边时以\(u\)为根的子树内所包含的链权值之和的最大值。
为了方便,\(dp[u][1]\)是还未构造完当前这条链的权值和,也就是说这个东西不需要减去\(v\)。
设:
\]
可以得出\(dp\)式:
\]
\]
\]
注意开\(\text {long long}\)即可。
\(\text {Code}\)
\(\text {The 3rd}\)
解题思路
考虑最朴素的\(n^3\texttt{dp}\),可以设\(dp[i][j][k]\)表示前\(i\)个神奇宝贝用了\(j\)个宝贝球和\(k\)个超级球的最大期望捕捉个数。
容易得到转移式:
\]
我们发现如果我们固定\(j\),可以通过打表发现这其实是个凸函数,于是我们可以使用\(\texttt{wqs}\)二分做到\(\Theta(n^2\log n)\)。我们发现对于\(j\)也有同样的性质,所以我们可以\(\texttt{wqs}\)套\(\texttt{wqs}\)二分做到\(\Theta(n\log ^2 n)\)。
不过似乎概率都是\(1\)的时候会卡掉,因为它不是一个凸函数函数了,到后面是一个常函数了。但是这道题数据很水,所以还是没有被卡。
\(\text {Code}\)
\(\text {The 4th}\)
题目大意
现在有\(n\)个村庄,你需要在里面选出\(k\)个作为邮局,使得每个村庄到其最近的邮局之和最小。
思路
这道题其实跟\(\text {The 1st}\)有些类似。
首先我们可以列出\(dp\)式,设\(dp[i][j]\)表示前面\(i\)个村庄选出\(j\)个作为邮局,那么,容易得到:
\]
其中\(\texttt{cost}(i,j)\)表示\(i\to j\)这段村庄选出一个作为邮局的最小距离和,不难想到选出来的村庄为中间点时最优,于是可以利用前缀和\(\Theta(1)\)求出。
那接下来应该怎么办呢?第一种办法就是平行四边形优化,但显然时间复杂度还是\(\Theta(n^2)\),虽然足以通过此题,但是不能满足我们对时间复杂度的渴望。第二种办法就是\(\texttt {wqs}\)二分。
感性理解一下,随着选出来的村庄的增多,那么,增长速度也会逐渐变慢。于是可以得到,当前函数为凸函数,也就可以用\(\texttt {wqs}\)二分。
那么,我们现在就可以得到\(dp\)式了:
\]
其中\(\texttt {extra}\)表示额外花费。
我们惊奇地 通过打表 发现,这个东西是具有决策单调性的,于是,我们就可以使用决策单调栈优化了。
综上,时间复杂度为\(\Theta(n\log ^2n)\)。
\(\text {Code}\)
\(\text{The 5th}\)
题目大意
给出 \(n,k\) , 将一个长度为 \(n\) 的序列分成 \(k\) 段,每一段的贡献是矩阵的一个子矩阵的区间和。求出最小划分贡献。
\(n\le 4000,0\le k\le \min(n,800)\)
思路
首先不难想到一个 \(\Theta(n^2k)\)的dp方法,我们设 \(f_{i,j}\) 表示前面 \(j\)分成 \(i\) 段的最小花费,可以得到转移式:
\]
其中 \(cost(k,j)\) 表示左上角为 \((k,k)\) 右下角为 \((j,j)\) 的子矩阵的和。
然后可以发现这个函数是个凸函数,因为它分得越多它的贡献肯定越小,而且它下降的速率肯定会越来越慢(感性理解),于是我们就可以使用\(\texttt {wqs}\)二分了,但是这样直接转移还是 \(\Theta(n^2\log w)\) ,其中 \(w\) 是值域,还不足以通过此题,然后我们通过打表发现决策点单调递增,于是我们就可以使用单调栈了。
wqs二分 学习笔记的更多相关文章
- [总结] wqs二分学习笔记
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\ ...
- WQS二分学习笔记
前言 \(WQS\)二分听起来是个很难的算法,其实学起来也并不是那么难. 适用范围 在某些题目中,会对于某个取得越多越优的物品,限定你最多选择\(k\)个,问你能得到的最优答案. 例如这道题目:[CF ...
- dp凸优化/wqs二分学习笔记(洛谷4383 [八省联考2018]林克卡特树lct)
qwq 安利一个凸优化讲的比较好的博客 https://www.cnblogs.com/Gloid/p/9433783.html 但是他的暴力部分略微有点问题 qwq 我还是详细的讲一下这个题+这个知 ...
- p2619 [国家集训队2]Tree I [wqs二分学习]
分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...
- 一篇自己都看不懂的CDQ分治&整体二分学习笔记
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...
- CDQ分治与整体二分学习笔记
CDQ分治部分 CDQ分治是用分治的方法解决一系列类似偏序问题的分治方法,一般可以用KD-tree.树套树或权值线段树代替. 三维偏序,是一种类似LIS的东西,但是LIS的关键字只有两个,数组下标和 ...
- 决策单调性&wqs二分
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- [学习笔记]凸优化/WQS二分/带权二分
从一个题带入:[八省联考2018]林克卡特树lct——WQS二分 比较详细的: 题解 P4383 [[八省联考2018]林克卡特树lct] 简单总结和补充: 条件 凸函数,限制 方法: 二分斜率,找切 ...
随机推荐
- IDEA第三方jar包引入的三种方法(专治IDEA2020.1.1的坑)
一: 二: 三:
- ES6扩展——箭头函数
1.箭头函数 在es6中,单一参数的单行箭头函数语法结构可以总结如下: const 函数名 = 传入的参数 => 函数返回的内容,因此针对于 const pop = arr => arr. ...
- Tensorflow之TFRecord的原理和使用心得
本文首发于微信公众号「对白的算法屋」 大家好,我是对白. 目前,越来越多的互联网公司内部都有自己的一套框架去训练模型,而模型训练时需要的数据则都保存在分布式文件系统(HDFS)上.Hive作为构建在H ...
- Robot Framework(7)- DateTime 测试库常用的关键字列表
如果你还想从头学起Robot Framework,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1770899.html 前言 所有关键字 ...
- Spring Boot入门系列(二十六)超级简单!Spring Data JPA 的使用!
之前介绍了Mybatis数据库ORM框架,也介绍了使用Spring Boot 的jdbcTemplate 操作数据库.其实Spring Boot 还有一个非常实用的数据操作框架:Spring Data ...
- Operator 示例:使用 Redis 部署 PHP 留言板应用程序
「Kubernetes 官方示例:使用 Redis 部署 PHP 留言板应用程序」Operator 化. 源码仓库:https://github.com/jxlwqq/guestbook-operat ...
- Apache Dolphin Scheduler - Dockerfile 详解
Apache DolphinScheduler 是一个分布式去中心化,易扩展的可视化 DAG 工作流任务调度系统.简称 DS,包括 Web 及若干服务,它依赖 PostgreSQL 和 Zookeep ...
- C++课后习题
一.设计一个类people,有保护数据成员:age(年龄,整型),name(姓名,string),行为成员:两个构造函数(一个默认,另一个带参数):析构函数:void setValue(int m, ...
- git介绍-常用操作(一)
Table of Contents 1 系列文章 2 git说明 3 git常用命令 3.1 基本操作 3.2 远程操作 4 查看git的配置 4.1 查看已配置项 4.2 其他配置 ...
- PHP中的文件系统函数(一)
从这篇文章开始,我们将学习一系列的 PHP 文件系统相关函数.其实这些函数中,有很多都是我们经常用到的,大家并不需要刻意地去记住它们,只要知道有这么个东西,在使用的时候记得来查文档就可以了. 文件路径 ...