正题

题目链接:https://darkbzoj.tk/problem/4589


题目大意

求有多少个长度为\(n\)的数列满足它们都是不大于\(m\)的质数且异或和为\(0\)。


解题思路

两个初始多项式\(F[0]=1\),\(G[prime\leq m]=1\),然后答案就是\(F\ xor\ G^n\)。然后\(\text{FWT}\)之后点值快速幂就好了。

时间复杂度\(O(n\log n)\)

\(\color{white}{写水题有助于背板}\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=(1<<16)+10,P=1e9+7,inv2=(P+1)/2;
ll n,k,m,f[N],g[N];
bool v[N];
void FWT(ll *f,ll op){
if(op==-1)op=inv2;
for(ll p=2;p<=n;p<<=1)
for(ll k=0,len=p>>1;k<n;k+=p)
for(ll i=k;i<k+len;i++){
ll x=f[i],y=f[i+len];
f[i]=(x+y)*op%P;
f[i+len]=(x-y+P)*op%P;
}
return;
}
signed main()
{
while(scanf("%lld%lld",&k,&m)!=EOF){
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
memset(v,0,sizeof(v));
n=1;
while(n<=m)n<<=1;
for(ll i=2;i<=m;i++){
if(!v[i]){
f[i]=1;
for(ll j=i;j<=m;j+=i)
v[j]=1;
}
}
g[0]=1;
FWT(g,1);FWT(f,1);
while(k){
if(k&1){
for(ll i=0;i<n;i++)
g[i]=g[i]*f[i]%P;
}
for(ll i=0;i<n;i++)
f[i]=f[i]*f[i]%P;
k>>=1;
}
FWT(g,-1);
printf("%lld\n",g[0]);
}
return 0;
}

bzoj4589-Hard Nim【FWT】的更多相关文章

  1. BZOJ4589 Hard Nim 【FWT】

    题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...

  2. POJ2975 Nim 【博弈论】

    DescriptionNim is a 2-player game featuring several piles of stones. Players alternate turns, and on ...

  3. LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】

    题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...

  4. hdu6057 Kanade's convolution 【FWT】

    题目链接 hdu6057 题意 给出序列\(A[0...2^{m} - 1]\)和\(B[0...2^{m} - 1]\),求所有 \[C[k] = \sum\limits_{i \; and \; ...

  5. CSU1911 Card Game 【FWT】

    题目链接 CSU1911 题解 FWT模板题 #include<algorithm> #include<iostream> #include<cstdlib> #i ...

  6. [JZOJ6088] [BZOJ5376] [loj #2463]【2018集训队互测Day 1】完美的旅行【线性递推】【多项式】【FWT】

    Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记 ...

  7. Poj1704:staircase nim【博弈】

    题目大意:有一个无限长的一维的棋盘,棋盘上N个格子放置着棋子.两个人轮流操作,每次操作能选择其中一个棋子向左移动,但不能越过其它棋子或者两枚棋子放在同一格中,最后不能操作的人算输,问先手是否必胜? 思 ...

  8. 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】

    Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...

  9. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

随机推荐

  1. C#基础知识---迭代器与Foreach语句

    一.Foreach语句简介 在C# 1.0中我们经常使用foreach来遍历一个集合中的元素,然而如果一个集合要支持使用foreach语句来进行遍历,这个集合一般需要IEnumerable或IEnum ...

  2. 【springcloud】Zuul高级配置(zuul--3)

    转自:https://blog.csdn.net/pengjunlee/article/details/87285673 为路由提供HystrixFallback 当Zuul中某一个路由的断路器被断开 ...

  3. 09.SpringMVC之类型转换

    一. 类型转换器 前端传入的值,从表单中传入的值,都是字符串或者是字符串数组的形式传入的,在后端需要进行手动的转换类型,然后才能正确的使用. 框架一般对常见的数据类型的转换进行了封装提供,如字符串转换 ...

  4. Failed to start LSB: Bring up/down错误解决方法

    很多朋友在使用centos7系统时,有时候需要分配多个IP地址,这就涉及到修改网卡配置,但是在修改完网卡配置时,重启网络服务时会出现"Failed to start LSB: Bring u ...

  5. 30 道 Vue 面试题,内含详细讲解(涵盖入门到精通,自测 Vue 掌握程度)

    前言 本文以前端面试官的角度出发,对 Vue 框架中一些重要的特性.框架的原理以问题的形式进行整理汇总,意在帮助作者及读者自测下 Vue 掌握的程度.本文章节结构以从易到难进行组织,建议读者按章节顺序 ...

  6. 三大操作系统对比使用之·Windows10

    时间:2018-10-29 记录:byzqy 本篇是一篇个人对Windows系统使用习惯.技巧和应用推荐的文档,在此记录.分享和后续查询备忘. 打开终端: Win+R,调出"运行" ...

  7. Tomcat集群Cluster实现原理

    1.Tomcat集群         Tomcat集群的问题之一是如何处理Session,Session是有状态的,请求到了Tomcat,后续流传是要根据上下文(Context)来进行的.我们可以改造 ...

  8. Oracle环境配置之山路十八弯

    Oracle数据库的安装 背景: 因为疫情原因,只能在家上网课,学习Oracle的时候需要安装数据库,但是!! 安装的时候出现了报错: 无法检查指定的位置是否位于 CFS 上. 出来这个基本无解,这个 ...

  9. Shell 脚本如何输出帮助信息?

    作者展示了一个技巧,将帮助信息写在 Bash 脚本脚本的头部,然后只要执行"脚本名 + help",就能输出这段帮助信息 https://samizdat.dev/help-mes ...

  10. Spring依赖注入的四种方式

    首先,我们需要定义一个Bean的class类: package framework.spring; import org.springframework.beans.BeansException; i ...