Wang J, Chen Y, Chakraborty R, et al. Orthogonal Convolutional Neural Networks.[J]. arXiv: Computer Vision and Pattern Recognition, 2019.

@article{wang2019orthogonal,

title={Orthogonal Convolutional Neural Networks.},

author={Wang, Jiayun and Chen, Yubei and Chakraborty, Rudrasis and Yu, Stella X},

journal={arXiv: Computer Vision and Pattern Recognition},

year={2019}}

本文提出了一种正交化CNN的方法.

主要内容

符号说明

\(X \in \mathbb{R}^{N \times C \times H \times W}\): 输入

\(K \in \mathbb{R}^{M \times C \times k \times k}\): 卷积核

\(Y \in \mathbb{R}^{N \times M \times H' \times W'}\): 输出

\[Y= Conv(K,X)
\]

\(Y=Conv(K,X)\)的俩种表示



\(Y=K\tilde{X}\)

此时\(K\in \mathbb{R}^{M \times Ck^2}\), 每一行相当于一个卷积核, \(\tilde{X} \in \mathbb{R}^{Ck^2 \times H'W'}\), \(Y \in \mathbb{R}^{M \times H'W'}\).

\(Y=\mathcal{K}X\)

此时\(X \in \mathbb{R}^{CHW}\)相当于将一张图片拉成条, \(\mathcal{K} \in \mathbb{R}^{MHW' \times CHW}\), 同样每一次行列作内积相当于一次卷积操作, \(Y \in \mathbb{R}^{MH'W'}\).

kernel orthogonal regularization

相当于要求\(KK^T=I\)(行正交) 或者\(K^TK=I\)(列正交), 正则项为

\[L_{korth-row}= \|KK^T-I\|_F,\\
L_{korth-col}= \|K^TK-I\|_F.
\]

作者在最新的论文版本中说明了, 这二者是等价的.

orthogonal convolution

作者期望的便是\(\mathcal{K}\mathcal{K}^T=I\)或者\(\mathcal{K}^T\mathcal{K}=I\).

用\(\mathcal{K}(ihw,\cdot)\)表示第\((i-1) H'W'+(h-1)W'+w\)行, 对应的\(\mathcal{K}(\cdot, ihw)\)表示\((i-1) HW+(h-1)W+w\)列.

则\(\mathcal{K}\mathcal{K}^T=I\)等价于

\[\tag{5}
\langle \mathcal{K}(ih_1w_1, \cdot), \mathcal{K}(jh_2w_2,\cdot)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

\(\mathcal{K}^T\mathcal{K}=I\)等价于

\[\tag{10}
\langle \mathcal{K}(\cdot, ih_1w_1), \mathcal{K}(\cdot, jh_2w_2)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

实际上这么作是由很多冗余的, 可以进一步化为更简单的形式.

(5)等价于

\[\tag{7}
Conv(K, K,padding=P, stride=S)=I_{r0},
\]

其中\(I_{r0}\in \mathbb{R}^{M\times M \times (2P/S+1) \times (2P/S+1)}\)仅在\([i,i,\lfloor \frac{k-1}{S} \rfloor+1,\lfloor \frac{k-1}{S} \rfloor+1], i=1,\ldots, M\)处为\(1\)其余元素均为\(0\).

\[P= \lfloor \frac{k-1}{S} \rfloor \cdot S.
\]

其推导过程如下(这个实在不好写清楚):

\(\mathcal{K}^T\mathcal{K}\)在\(S=1\)特殊情况下的特殊情况下, (10)等价于

\[\tag{11}
Conv (K^T,K^T, padding=k-1, stride=1)=I_{c0},
\]

其中\(I_{c0} \in \mathbb{R}^{C \times C \times (2k-1) \times (2k-1)}\), 同样仅在\((i,i,k,k)\)处为1, 其余非零.\(K^T \in \mathbb{R}^{C \times M \times k \times k}\)是\(K\)的第1, 2坐标轴进行变换.



同样的

\[\min_K \|\mathcal{K}\mathcal{K}^T-I\|_F
\]

\[\min_K \|\mathcal{K}^T\mathcal{K}-I\|_F
\]

是等价的.

另一方面, 最开始提到的kernel orthogonal regularization是orthogonal convolution的必要条件(但不充分)\(KK^T=I\), \(K^TK=I\)分别等价于:

\[Conv(K,K,padding=0)=I_{r0} \\
Conv(K^T, K^T, padding=0)=I_{c_0},
\]

其中\(I_{r0} \in \mathbb{R}^{M \times M \times 1 \times 1}\), \(I_{c0} \in \mathbb{R}^{C \times C \times 1 \times 1}\).

Orthogonal Convolutional Neural Networks的更多相关文章

  1. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  2. Notes on Convolutional Neural Networks

    这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...

  3. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  4. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. 阅读笔记 The Impact of Imbalanced Training Data for Convolutional Neural Networks [DegreeProject2015] 数据分析型

    The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David M ...

  7. 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

    本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classificati ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

随机推荐

  1. 创建Oracle数据库实例

    创建Oracle数据库实例 转自oracle数据库创建实例 数据库已经安装完成,可以正常登陆查看用户等操作. system用户只能用normal身份登陆em.除非你对它授予了sysdba的系统权限或者 ...

  2. 使用Rapidxml重建xml树

    需求 : 重建一棵xml树, 在重建过程中对原来的标签进行一定的修改. 具体修改部分就不给出了, 这里只提供重建部分的代码 code : /****************************** ...

  3. d3 CSS

    CSS的inline.block与inline-block 块级元素(block):独占一行,对宽高的属性值生效:如果不给宽度,块级元素就默认为浏览器的宽度,即就是100%宽. 行内元素(inline ...

  4. 在隐藏导航栏的控制器中,调用UIIMagePickerController,出现导航栏变透明的问题

    在隐藏导航栏的控制器中,调用UIIMagePickerController,出现导航栏变透明的问题 解决办法 #pragma mark - UIImagePickerController Delega ...

  5. zabbix之微信报警

    #:先在企业微信注册一个企业微信号 #:注册好之后,进入微信 #:测试一下 #:获取access_token #:开始获取 #:获取 #:在server端安装pip root@ubuntu:~# ap ...

  6. java-阿里邮件推送服务开发 -- 发送邮箱验证码

    参考文档: 如何在 DNS 服务器上配置域名:https://help.aliyun.com/knowledge_detail/39397.html?spm=5176.2020520150.102.d ...

  7. 【编程思想】【设计模式】【行为模式Behavioral】command

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/command.py #!/usr/bin/env pyt ...

  8. 【Spring Framework】Spring入门教程(五)AOP思想和动态代理

    本文主要讲解内容如下: Spring的核心之一 - AOP思想 (1) 代理模式- 动态代理 ① JDK的动态代理 (Java官方) ② CGLIB 第三方代理 AOP概述 什么是AOP(面向切面编程 ...

  9. 2.使用Lucene开发自己的搜索引擎–indexer索引程序中基本类介绍

    (1)Directory:Directory类描述了Lucene索引的存放位置,它是一个抽象,其子类负责具体制定索引的存储路径.FSDirectory.open方法来获取真实文件在文件系统中的存储路径 ...

  10. MicroK8S 安装 修改IP 设置镜像加速 升级 卸载等

    系统要求: Ubuntu 20.04 LTS, 18.04 LTS or 16.04 LTS或其他支持snapd的操作系统 内存:4G+ 硬盘:20G+ 官方文档 安装microk8s sudo sn ...