Orthogonal Convolutional Neural Networks
@article{wang2019orthogonal,
title={Orthogonal Convolutional Neural Networks.},
author={Wang, Jiayun and Chen, Yubei and Chakraborty, Rudrasis and Yu, Stella X},
journal={arXiv: Computer Vision and Pattern Recognition},
year={2019}}
概
本文提出了一种正交化CNN的方法.
主要内容
符号说明
\(X \in \mathbb{R}^{N \times C \times H \times W}\): 输入
\(K \in \mathbb{R}^{M \times C \times k \times k}\): 卷积核
\(Y \in \mathbb{R}^{N \times M \times H' \times W'}\): 输出
\]
\(Y=Conv(K,X)\)的俩种表示


\(Y=K\tilde{X}\)
此时\(K\in \mathbb{R}^{M \times Ck^2}\), 每一行相当于一个卷积核, \(\tilde{X} \in \mathbb{R}^{Ck^2 \times H'W'}\), \(Y \in \mathbb{R}^{M \times H'W'}\).
\(Y=\mathcal{K}X\)
此时\(X \in \mathbb{R}^{CHW}\)相当于将一张图片拉成条, \(\mathcal{K} \in \mathbb{R}^{MHW' \times CHW}\), 同样每一次行列作内积相当于一次卷积操作, \(Y \in \mathbb{R}^{MH'W'}\).
kernel orthogonal regularization
相当于要求\(KK^T=I\)(行正交) 或者\(K^TK=I\)(列正交), 正则项为
L_{korth-col}= \|K^TK-I\|_F.
\]
作者在最新的论文版本中说明了, 这二者是等价的.
orthogonal convolution
作者期望的便是\(\mathcal{K}\mathcal{K}^T=I\)或者\(\mathcal{K}^T\mathcal{K}=I\).
用\(\mathcal{K}(ihw,\cdot)\)表示第\((i-1) H'W'+(h-1)W'+w\)行, 对应的\(\mathcal{K}(\cdot, ihw)\)表示\((i-1) HW+(h-1)W+w\)列.
则\(\mathcal{K}\mathcal{K}^T=I\)等价于
\langle \mathcal{K}(ih_1w_1, \cdot), \mathcal{K}(jh_2w_2,\cdot)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]
\(\mathcal{K}^T\mathcal{K}=I\)等价于
\langle \mathcal{K}(\cdot, ih_1w_1), \mathcal{K}(\cdot, jh_2w_2)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]
实际上这么作是由很多冗余的, 可以进一步化为更简单的形式.
(5)等价于
Conv(K, K,padding=P, stride=S)=I_{r0},
\]
其中\(I_{r0}\in \mathbb{R}^{M\times M \times (2P/S+1) \times (2P/S+1)}\)仅在\([i,i,\lfloor \frac{k-1}{S} \rfloor+1,\lfloor \frac{k-1}{S} \rfloor+1], i=1,\ldots, M\)处为\(1\)其余元素均为\(0\).
\]
其推导过程如下(这个实在不好写清楚):



\(\mathcal{K}^T\mathcal{K}\)在\(S=1\)特殊情况下的特殊情况下, (10)等价于
Conv (K^T,K^T, padding=k-1, stride=1)=I_{c0},
\]
其中\(I_{c0} \in \mathbb{R}^{C \times C \times (2k-1) \times (2k-1)}\), 同样仅在\((i,i,k,k)\)处为1, 其余非零.\(K^T \in \mathbb{R}^{C \times M \times k \times k}\)是\(K\)的第1, 2坐标轴进行变换.

同样的
\]
与
\]
是等价的.
另一方面, 最开始提到的kernel orthogonal regularization是orthogonal convolution的必要条件(但不充分)\(KK^T=I\), \(K^TK=I\)分别等价于:
Conv(K^T, K^T, padding=0)=I_{c_0},
\]
其中\(I_{r0} \in \mathbb{R}^{M \times M \times 1 \times 1}\), \(I_{c0} \in \mathbb{R}^{C \times C \times 1 \times 1}\).
Orthogonal Convolutional Neural Networks的更多相关文章
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- Notes on Convolutional Neural Networks
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- 阅读笔记 The Impact of Imbalanced Training Data for Convolutional Neural Networks [DegreeProject2015] 数据分析型
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David M ...
- 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。
本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classificati ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
随机推荐
- 创建Oracle数据库实例
创建Oracle数据库实例 转自oracle数据库创建实例 数据库已经安装完成,可以正常登陆查看用户等操作. system用户只能用normal身份登陆em.除非你对它授予了sysdba的系统权限或者 ...
- 使用Rapidxml重建xml树
需求 : 重建一棵xml树, 在重建过程中对原来的标签进行一定的修改. 具体修改部分就不给出了, 这里只提供重建部分的代码 code : /****************************** ...
- d3 CSS
CSS的inline.block与inline-block 块级元素(block):独占一行,对宽高的属性值生效:如果不给宽度,块级元素就默认为浏览器的宽度,即就是100%宽. 行内元素(inline ...
- 在隐藏导航栏的控制器中,调用UIIMagePickerController,出现导航栏变透明的问题
在隐藏导航栏的控制器中,调用UIIMagePickerController,出现导航栏变透明的问题 解决办法 #pragma mark - UIImagePickerController Delega ...
- zabbix之微信报警
#:先在企业微信注册一个企业微信号 #:注册好之后,进入微信 #:测试一下 #:获取access_token #:开始获取 #:获取 #:在server端安装pip root@ubuntu:~# ap ...
- java-阿里邮件推送服务开发 -- 发送邮箱验证码
参考文档: 如何在 DNS 服务器上配置域名:https://help.aliyun.com/knowledge_detail/39397.html?spm=5176.2020520150.102.d ...
- 【编程思想】【设计模式】【行为模式Behavioral】command
Python版 https://github.com/faif/python-patterns/blob/master/behavioral/command.py #!/usr/bin/env pyt ...
- 【Spring Framework】Spring入门教程(五)AOP思想和动态代理
本文主要讲解内容如下: Spring的核心之一 - AOP思想 (1) 代理模式- 动态代理 ① JDK的动态代理 (Java官方) ② CGLIB 第三方代理 AOP概述 什么是AOP(面向切面编程 ...
- 2.使用Lucene开发自己的搜索引擎–indexer索引程序中基本类介绍
(1)Directory:Directory类描述了Lucene索引的存放位置,它是一个抽象,其子类负责具体制定索引的存储路径.FSDirectory.open方法来获取真实文件在文件系统中的存储路径 ...
- MicroK8S 安装 修改IP 设置镜像加速 升级 卸载等
系统要求: Ubuntu 20.04 LTS, 18.04 LTS or 16.04 LTS或其他支持snapd的操作系统 内存:4G+ 硬盘:20G+ 官方文档 安装microk8s sudo sn ...