Wang J, Chen Y, Chakraborty R, et al. Orthogonal Convolutional Neural Networks.[J]. arXiv: Computer Vision and Pattern Recognition, 2019.

@article{wang2019orthogonal,

title={Orthogonal Convolutional Neural Networks.},

author={Wang, Jiayun and Chen, Yubei and Chakraborty, Rudrasis and Yu, Stella X},

journal={arXiv: Computer Vision and Pattern Recognition},

year={2019}}

本文提出了一种正交化CNN的方法.

主要内容

符号说明

\(X \in \mathbb{R}^{N \times C \times H \times W}\): 输入

\(K \in \mathbb{R}^{M \times C \times k \times k}\): 卷积核

\(Y \in \mathbb{R}^{N \times M \times H' \times W'}\): 输出

\[Y= Conv(K,X)
\]

\(Y=Conv(K,X)\)的俩种表示



\(Y=K\tilde{X}\)

此时\(K\in \mathbb{R}^{M \times Ck^2}\), 每一行相当于一个卷积核, \(\tilde{X} \in \mathbb{R}^{Ck^2 \times H'W'}\), \(Y \in \mathbb{R}^{M \times H'W'}\).

\(Y=\mathcal{K}X\)

此时\(X \in \mathbb{R}^{CHW}\)相当于将一张图片拉成条, \(\mathcal{K} \in \mathbb{R}^{MHW' \times CHW}\), 同样每一次行列作内积相当于一次卷积操作, \(Y \in \mathbb{R}^{MH'W'}\).

kernel orthogonal regularization

相当于要求\(KK^T=I\)(行正交) 或者\(K^TK=I\)(列正交), 正则项为

\[L_{korth-row}= \|KK^T-I\|_F,\\
L_{korth-col}= \|K^TK-I\|_F.
\]

作者在最新的论文版本中说明了, 这二者是等价的.

orthogonal convolution

作者期望的便是\(\mathcal{K}\mathcal{K}^T=I\)或者\(\mathcal{K}^T\mathcal{K}=I\).

用\(\mathcal{K}(ihw,\cdot)\)表示第\((i-1) H'W'+(h-1)W'+w\)行, 对应的\(\mathcal{K}(\cdot, ihw)\)表示\((i-1) HW+(h-1)W+w\)列.

则\(\mathcal{K}\mathcal{K}^T=I\)等价于

\[\tag{5}
\langle \mathcal{K}(ih_1w_1, \cdot), \mathcal{K}(jh_2w_2,\cdot)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

\(\mathcal{K}^T\mathcal{K}=I\)等价于

\[\tag{10}
\langle \mathcal{K}(\cdot, ih_1w_1), \mathcal{K}(\cdot, jh_2w_2)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

实际上这么作是由很多冗余的, 可以进一步化为更简单的形式.

(5)等价于

\[\tag{7}
Conv(K, K,padding=P, stride=S)=I_{r0},
\]

其中\(I_{r0}\in \mathbb{R}^{M\times M \times (2P/S+1) \times (2P/S+1)}\)仅在\([i,i,\lfloor \frac{k-1}{S} \rfloor+1,\lfloor \frac{k-1}{S} \rfloor+1], i=1,\ldots, M\)处为\(1\)其余元素均为\(0\).

\[P= \lfloor \frac{k-1}{S} \rfloor \cdot S.
\]

其推导过程如下(这个实在不好写清楚):

\(\mathcal{K}^T\mathcal{K}\)在\(S=1\)特殊情况下的特殊情况下, (10)等价于

\[\tag{11}
Conv (K^T,K^T, padding=k-1, stride=1)=I_{c0},
\]

其中\(I_{c0} \in \mathbb{R}^{C \times C \times (2k-1) \times (2k-1)}\), 同样仅在\((i,i,k,k)\)处为1, 其余非零.\(K^T \in \mathbb{R}^{C \times M \times k \times k}\)是\(K\)的第1, 2坐标轴进行变换.



同样的

\[\min_K \|\mathcal{K}\mathcal{K}^T-I\|_F
\]

\[\min_K \|\mathcal{K}^T\mathcal{K}-I\|_F
\]

是等价的.

另一方面, 最开始提到的kernel orthogonal regularization是orthogonal convolution的必要条件(但不充分)\(KK^T=I\), \(K^TK=I\)分别等价于:

\[Conv(K,K,padding=0)=I_{r0} \\
Conv(K^T, K^T, padding=0)=I_{c_0},
\]

其中\(I_{r0} \in \mathbb{R}^{M \times M \times 1 \times 1}\), \(I_{c0} \in \mathbb{R}^{C \times C \times 1 \times 1}\).

Orthogonal Convolutional Neural Networks的更多相关文章

  1. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  2. Notes on Convolutional Neural Networks

    这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...

  3. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  4. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. 阅读笔记 The Impact of Imbalanced Training Data for Convolutional Neural Networks [DegreeProject2015] 数据分析型

    The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David M ...

  7. 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

    本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classificati ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

随机推荐

  1. Jenkins:参数化构建:分支|模块|回滚|打印日志

    @ 目录 多分支 安装Git Parameter Plug-In 配置参数 选择构建分支 分模块 前提 分模块build 参数配置 分模块shell脚本 mvn 的基本用法 分模块运行 Jenkins ...

  2. 3.3 GO字符串处理

    strings方法 index 判断子字符串或字符在父字符串中出现的位置(索引)Index 返回字符串 str 在字符串 s 中的索引( str 的第一个字符的索引),-1 表示字符串 s 不包含字符 ...

  3. 关系型数据库和非关系型数据库区别、oracle与mysql的区别

    一.关系型数据库 关系型数据库,是指采用了关系模型来组织数据的数据库.    关系模型是在1970年由IBM的研究员E.F.Codd博士首先提出的,在之后的几十年中,关系模型的概念得到了充分的发展并逐 ...

  4. MyBatis绑定Mapper接口参数到Mapper映射文件sql语句参数

    一.设置paramterType 1.类型为基本类型 a.代码示例 映射文件: <select id="findShopCartInfoById" parameterType ...

  5. 1945-祖安say hello-string

    1 #include<bits/stdc++.h> 2 char str[100][40]; 3 char s[1005]; 4 5 int remark[2000][2] = { 0 } ...

  6. win10 安装xmemcache及使用

    一.下载链接 链接:https://pan.baidu.com/s/14J6Vc8TBEZeRoMp2MgcydQ 提取码:3q8r 二.安装 安装: memcached -d  install 卸载 ...

  7. HashMap的putAll方法介绍说明

    jdk1.8 使用putAll时,新map中的值仅为旧map值所对应对象的引用,并不会产生新对象. 如下,使用for循环赋值! public void putAll(Map<? extends ...

  8. Sentry 监控 - 私有 Docker Compose 部署与故障排除详解

    内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...

  9. 【JAVA今法修真】 第四章 redis特性 击穿雪崩!

    感谢这段时间大家的支持,关注我的微信号:南橘ryc ,回复云小霄,就可以获取到最新的福利靓照一张,还等什么,赶快来加入我们吧~ "明日便是决赛了,咋只会用法器没练过法术呢.". 选 ...

  10. 层次分析法、模糊综合评测法实例分析(涵盖各个过程讲解、原创实例示范、MATLAB源码公布)

    目录 一.先定个小目标 二.层次分析法部分 2.1 思路总括 2.2 构造两两比较矩阵 2.3 权重计算方法 2.3.1 算术平均法求权重 2.3.2 几何平均法求权重 2.3.3 特征值法求权重 2 ...