Normalized Cuts and Image Segmentation
Shi J. and Malik J. Normalized cuts and image segmentation. In IEEE Transactions on Pattern Analysis and Machine Intelligence.
概
在Digital Image Preprocessing的书上看到了这个算法, 对于其公式结果的推出不是很理解, 于是下载下来看了看. 本文主要讲的是一种利用图结构进行图像分割的算法.
主要内容
假设\(f(x, y), x=1,2,\cdots M, y=1,2,\cdots N\)为一张图片, 我们想要对其进行分割. 给定某一个距离函数, 可以用于衡量任意两点\(i, j\)的相似度:
\]
把图片的每一个pixel看成一个节点, pixel和pixel之间的边为一条无向边, 则整体构成了一个无向的图 \(G = (V, E)\), 每条边的权重如上所述是\(w_{ij}\), 故易知\(w_{ij} = w_{ji}\). 我们的目标是将图分成相斥的两块\(A, B\), 即满足:
\]
以往的做法是, 找到一个分割, 使得下列指标最小:
\]
但是这种策略往往会导致不均匀的分割, 即最角落里的元素被单独分割出来:

于是作者提出了一种新的指标:
\]
其中\(assoc(A, V) = \sum_{i \in A, j \in V} w_{ij}\).
注意到:
\]
所以只有到\(assoc(A, A), assoc(B, B)\)都足够大的时候Ncut才会足够小, 这说明该指标更关注了内部的一种紧密性.
求解
令
d_i = \sum_{j}w_{ij}.
\]
则
+\frac{\sum_{x_i < 0, x_i > 0} -w_{ij}x_i x_j}{\sum_{x_i < 0}d_i}.
\]
容易证明(但是不容易想到):
[\frac{1+x}{2}]_i = 0, \: \text{if } i \in B.
\]
[\frac{1-x}{2}]_i = 0, \: \text{if } i \in A.
\]
令
D_{ii} = d_i,
\]
且\(D_{ii}\)为对角矩阵.
所以我们能够证明以下事实:
4 \cdot assoc(A, V) = 2\cdot (1 + x)^T D 1 = (1 + x)^T D (1 + x) \\
4 \cdot assoc(B, V) = 2\cdot (1 - x)^T D 1 = (1 - x)^T D (1 - x) \\
assoc(V, V) = \sum_i d_i = 1^T D 1 \\
(1 + x)^T D (1 - x) = 0.
\]
又注意到:
\]
于是同理可证:
\]
令
\]
则
\]
综上可得:
\]
又
&[(1 + x) - b(1-x)]^T (D-W)[(1+x) - b(1-x)] \\
=& (1+x)^T(D-W)(1+x) + b^2 (1-x)^T(D-W) \\
&- 2b (1+x)^T(D-W)(1-x) \\
=&4(1+b^2)cut(A, B) - 2b (1 + x)^TD(1-x) + 2b(1 + x)^T W(1-x) \\
=&4(1+b^2)cut(A, B) - 0 + 8b cut(A, B) \\
=&4(1 + b)^2 cut(A, B).
\end{array}
\]
又
\]
故
b = \frac{k}{1-k}.
\]
令\(y = (1 + x) - b(1 - x)\), 且
\]
\]
故
\mathrm{s.t.} \quad y_i \in \{1, 1 - b\}.
\]
倘若我们能放松条件至实数域中, 此时只需要通过求解下列系统:
\]
需要注意的是:
\]
此时\(z_0 = D^{\frac{1}{2}}1\),
故\(1\)实际上上述系统的一个解, 且对应最小的特征值, 但其不是我们所要的解. 因为\(y\)必须要还满足:
\]
这意味着, 我们要的恰恰是
\]
的倒数第二小的特征值对应的特征向量\(z_1\), 于是\(y_1 = D^{-\frac{1}{2}}z_1\).
相似度
文中采用如下的计算方式:
\left \{
\begin{array}{ll}
e^{-\|F_i - F_j\|^2 / \sigma^2_I} \cdot e^{-\|X_i - X_j\|^2 / \sigma^2_X} & \text{if } \|X_i - X_j\| < r \\
0 & \text{else}.
\end{array}
\right.
\]
其中\(F\)对应颜色之类的距离, 如直接取密度值, 而\(X\)对应空间距离, \(r\)限定了搜索范围, 同样会导致\(W\)变成系数矩阵, 对应特征求解加速有帮助.
总的算法流程
- 计算权重矩阵\(W\)以及\(D\);
- 通过
\[D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}} z = \lambda z
\]计算得到倒数第二小的特征值所对应的特征向量\(z_1\)并令\(y_1=z_1\);
- 通过某种方法(如网格搜索)找到一个阈值\(t\):
\[x_i = 1, \: \text{if }y_i > t, \: \text{else } -1.
\]且\(x\)的划分下
\[Ncut(A, B)
\]较小.
- 对于\(A, B\)可以重复上述分割过程, 直到满足区域数目或者其它某种条件(比如文中说的特征向量的分布过于均匀时停止).
skimage.future.graph.cut
Normalized Cuts and Image Segmentation的更多相关文章
- {Reship}{Code}{CV}
UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/in ...
- UIUC同学Jia-Bin Huang收集的计算机视觉代码合集
转自:http://blog.sina.com.cn/s/blog_631a4cc40100wrvz.html UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: ...
- 计算机视觉与模式识别代码合集第二版two
Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, ...
- 谱聚类 Spectral Clustering
转自:http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297426.html 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算 ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- [ZZ] UIUC同学Jia-Bin Huang收集的计算机视觉代码合集
UIUC同学Jia-Bin Huang收集的计算机视觉代码合集 http://blog.sina.com.cn/s/blog_4a1853330100zwgm.htmlv UIUC的Jia-Bin H ...
- Computer Vision Resources
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...
- 漫谈 Clustering (4): Spectral Clustering
转:http://blog.pluskid.org/?p=287 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以 ...
- CV codes代码分类整理合集 《转》
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program] ...
随机推荐
- Hadoop入门 完全分布式运行模式-准备
目录 Hadoop运行环境 完全分布式运行模式(重点) scp secure copy 安全拷贝 1 hadoop102上的JDK文件推给103 2 hadoop103从102上拉取Hadoop文件 ...
- IDEA高颜值之最吸引小姐姐插件集合!让你成为人群中最靓的那个崽!
经常有小伙伴会来找TJ君,可能觉得TJ君比较靠谱,要TJ君帮忙介绍女朋友.TJ君一直觉得程序猿是天底下最可爱的一个群体,只不过有时候不善于表达自己的优秀,所以TJ君今天准备介绍几款酷炫实用的IDEA插 ...
- deque、queue和stack深度探索(上)
deque是可双端扩展的双端队列,蓝色部分就是它的迭代器类,拥有四个指针,第一个cur用来指向当前元素,first指向当前buffer头部,last指向当前buffer尾部,node指向map自己当前 ...
- Shell学习(九)——chattr与lsattr命令详解
有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chattr命令的作用很大,其中一些功能是由Linux内核版本来支持的,不过现在生产绝大部分跑的linux ...
- IntentFilter,PendingIntent
1.当Intent在组件间传递时,组件如果想告知Android系统自己能够响应那些Intent,那么就需要用到IntentFilter对象. IntentFilter对象负责过滤掉组件无法响应和处理的 ...
- Selenium之Canvas画布操作
现在有一个场景是需要进入到 Canvas画布中 进行单击操作,现在使用过如下方法 canvas = driver.find_element_by_xpath("//canvas[@id='# ...
- C# .exe和.dll文件图标资源提取工具
Windows 可执行文件(.exe)和动态库文件(.dll)图标资源提取工具 GitHub 功能 图标资源预览 图标资源导出(仅支持导出 PNG 格式) 代码 获取图标资源使用了 Win32 API ...
- 配置yum代理
一.说明 很多内网环境无法使用yum 二.配置 1.安装nginx 2.配置 server { listen 808; #禁用multipart range功能 max_ranges 1; serve ...
- 【CF1591】【数组数组】【逆序对】#759(div2)D. Yet Another Sorting Problem
题目:Problem - D - Codeforces 题解 此题是给数组排序的题,操作是选取任意三个数,然后交换他们,确保他们的位置会发生改变. 可以交换无限次,最终可以形成一个不下降序列就输出&q ...
- 如何实现 range 函数的参数?
关于 range 函数 Python内置的range函数可以接收三个参数: class range(stop): ... class range(start, stop[, step]): ... 标 ...