Problem C.Storage Keepers 

Background

Randy Company has N (1<=N<=100) storages. Company wants some men to keep them safe. Now there are M (1<=M<=30) men asking for the job. Company will choose several from them. Randy Company employs men following these rules:

1.       Each keeper has a number Pi (1<=Pi<=1000) , which stands for their ability.

2.       All storages are the same as each other.

3.       A storage can only be lookd after by one keeper. But a keeper can look after several storages. If a keeper’s ability number is Pi, and he looks after K storages, each storage that he looks after has a safe number Uj=Pi div K.(Note: Uj, Pi and K are all integers). The storage which is looked after by nobody will get a number 0.

4.       If all the storages is at least given to a man, company will get a safe line L=min Uj

5.       Every month Randy Company will give each employed keeper a wage according to his ability number. That means, if a keeper’s ability number is Pi, he will get Pi dollars every month. The total money company will pay the keepers every month is Y dollars.

Now Randy Company gives you a list that contains all information about N,M,P, your task is give company a best choice of the keepers to make the company pay the least money under the condition that the safe line L is the highest.

Input

The input file contains several scenarios. Each of them consists of 2 lines:

The first line consists of two numbers (N and M), the second line consists of M numbers, meaning Pi (I=1..M). There is only one space between two border numbers.

The input file is ended with N=0 and M=0.

Output

For each scenario, print a line containing two numbers L(max) and Y(min). There should be a space between them.

Sample Input

2 1

7

1 2

10 9

2 5

10 8 6 4 1

5 4

1 1 1 1

0 0

Sample Output

3 7

10 10

8 18

0 0

题意:有m个仓库, n个小伙伴,每个小伙伴有个能力值p,要这些小伙伴去守护仓库,每个小伙伴的雇佣金是p,每个小伙伴看守的仓库安全值为p/k(每个小伙伴看守仓库数)。仓库的安全值为所有仓库中,安全值最小的仓库的安全值。

要求出最大安全值和最大安全值下的最小开销。

思路: 背包, 首先是第一个问题,我们把每个小伙伴看成物品,要看守的仓库数看成背包容量,每个小伙伴看守的仓库数为k,价值为p[i]/k。 状态转移方程为dp[j] = max(dp[j], min(dp[j - k], p[i]/k).。

然后是第二个问题。在第一个问题求出的最大安全值maxx下,求最小价值,依然是背包,k表示每个小伙伴看守的仓库数,状态转移方程为dp[j] = min(dp[j], dp[j - k] + p[i]);

代码:

#include <stdio.h>
#include <string.h> const int INF = 1 << 30;
int n, m, p[105], i, j, k, dp[1005], maxx, minn; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} int main() {
while (~scanf("%d%d", &m, &n) && m || n) {
memset(dp, 0, sizeof(dp));
dp[0] = INF;
for (i = 0; i < n; i ++)
scanf("%d", &p[i]);
for (i = 0; i < n; i ++) {
for (j = m; j >= 0; j --) {
for (k = 1; k <= p[i] && k <= j; k ++) {
dp[j] = max(dp[j], min(dp[j - k], p[i] / k));
}
}
}
maxx = dp[m];
if (maxx == 0) {
printf("0 0\n");
continue;
}
for (i = 1; i <= m; i ++)
dp[i] = INF;
dp[0] = 0;
for (i = 0; i < n; i ++)
for (j = m; j >= 0; j --)
for (k = min(j, p[i]/maxx); k > 0; k --) {
dp[j] = min(dp[j], dp[j - k] + p[i]);
}
printf("%d %d\n", maxx, dp[m]);
}
return 0;
}

UVA 10163 Storage Keepers(dp + 背包)的更多相关文章

  1. uva 10163 - Storage Keepers(01背包)

    题目链接:10163 - Storage Keepers 题目大意:给出m为仓库的数量, 给出n为有守夜人的数量, 然后给出n个数值,为对应守夜人应付的酬劳,每个守夜人的能力与他需要的酬劳是相等的,并 ...

  2. UVA 10163 Storage Keepers(两次DP)

    UVA 10163 Storage Keepers(两次DP) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Ite ...

  3. DP(两次) UVA 10163 Storage Keepers

    题目传送门 /* 题意:(我懒得写,照搬网上的)有n个仓库,m个人看管.一个仓库只能由一个人来看管,一个人可以看管多个仓库. 每个人有一个能力值pi,如果他看管k个仓库,那么所看管的每个仓库的安全值为 ...

  4. UVa 10163 Storage Keepers (二分 + DP)

    题意:有n个仓库,m个管理员,每个管理员有一个能力值P,每个仓库只能由一个管理员看管,但是每个管理员可以看管k个仓库(但是这个仓库分配到的安全值只有p/k,k=0,1,...),雇用的管理员的工资即为 ...

  5. UVA 10163 - Storage Keepers(dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: 点击打开链接 题意 有n个仓库,让m个人来看管.一个仓库只能由一个人来看管,一个人可以看管多个仓库. 每个人 ...

  6. uva 10163 Storage Keepers

    题意: 有n个仓库,m个人,一个仓库只能由一个人托管,每个人可以托管多个仓库. 每个人有一个能力值a,如果说他托管了k个仓库,那么这些仓库的安全值都是a/k. 雇佣一个人的花费也是a. 如果一个仓库没 ...

  7. UVA-10163 Storage Keepers (0-1背包)

    题目大意:有n个仓库,m个应聘者,每人对应一个能力值.一个人可以看多个仓库,一间仓库只能被一个人看.如果一个能力为p的人看k间仓库,那么安全系数为p/k,求出最大的最小安全系数,并且求出在此情况下所有 ...

  8. UVA-10163 Storage Keepers DP

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  9. UVA 10163 十六 Storage Keepers

    十六 Storage Keepers Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

随机推荐

  1. 【PAT】1025. PAT Ranking (25)

    题目链接:http://pat.zju.edu.cn/contests/pat-a-practise/1025 题目描述: Programming Ability Test (PAT) is orga ...

  2. 非自定义和自定义Dialog的介绍!!!

    一.非自定义Dialog的几种形式介绍 转自:http://www.kwstu.com/ArticleView/kwstu_20139682354515 前言 对话框对于应用也是必不可少的一个组件,在 ...

  3. SAE利用storge上传文件 - myskies的专栏 - 博客频道 - CSDN.NET

    SAE利用storge上传文件 - myskies的专栏 - 博客频道 - CSDN.NET SAE利用storge上传文件

  4. 【每日一MOS】-RAC and Sequences (853652.1)

    序列有四种组合: a. CACHE + NOORDER b. CACHE + ORDER c. NOCACHE + NOORDER d. NOCACHE + ORDER 即使在单例配置下,当有大量的s ...

  5. hdu 4740 The Donkey of Gui Zhou(dfs模拟好题)

    Problem Description There was no donkey ,) , the down-right cell ,N-) and the cell below the up-left ...

  6. Java替代C语言的可能性

        前不久CSDN刊登了一篇<C语言已经死了>的文章,引起了一些争论.事实上那篇文章是从Ed Burnette的博客上转载来的,原文题目是“Die, C, die!”,直译过来应该是& ...

  7. android xUtils的使用

    gethub地址:https://github.com/wyouflf/xUtils/ xUtils简介 xUtils 包含了很多实用的android工具. xUtils 支持大文件上传,更全面的ht ...

  8. jQuery事件绑定方法bind、 live、delegate和on的区别

    我们试图绑定一些事件到DOM元素上的时候,我相信上面这4个方法是最常用的.而它们之间到底有什么不同呢?在什么场合下用什么方法是最有效的呢? 1.准备知识 当我们在开始的时候,有些知识是必须具备的: 1 ...

  9. Sublime 学习记录(五) Sublime 其他插件(个人喜好)

    (一)  JSFormat 安装 :命令面板 pci 回车 JSFormat 回车 功能 : javascript的代码格式化插件 简介 : 很多网站的JS代码都进行了压缩,一行式的甚至混淆压缩,这让 ...

  10. Java日志管理

    首页 资讯 精华 论坛 问答 博客 专栏 群组 更多 ▼ 您还未登录 ! 登录 注册 JavaCrazyer的ItEye(codewu.com)技术博客   博客 微博 相册 收藏 留言 关于我   ...