codevs1906 最长递增子序列问题
给定正整数序列x1,..... , xn 。
(1)计算其最长递增子序列的长度s。
(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列。
(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长
度为s的递增子序列。
第1 行有1个正整数n,表示给定序列的长度。接
下来的1 行有n个正整数x1.....xn 。
第1 行是最长递增子序列的长度s。第2行是可取出的长度为s 的递增子序列个数。第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的递增子序列个数。
4
3 6 2 5
2
2
3
不得不吐槽codevs上面网络流24题好多数据都是很蛋疼的要输出方案又不给spj……鬼知道你数据是用哪种方案啊
啊这题还算正常
第一问LIS随便求
第二问拆点完S向所有x1连流量1费用0的边,所有x2向T连流量1费用0的边,所有x1向x2连流量1费用1的边。因为要表示有没有取这个点
对于所有a[i]<a[j]且i<j的,i2向j1连流量1费用0的边
然后跑最大费用。每次增广搞完如果答案是第一问的最长长度,那么ans++。
第三问就是第二问的建图与1和n有关的边的流量全改inf就对了
#include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
#define inf 0x3ffffff
#define S 0
#define T 1001
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,ans,flow,cnt,tot;
int a[510];
int mn[510];
struct edge{int from,to,next,v,c;}e[500010];
int head[1010],dis[1010],q[1010],from[1010];
bool mrk[1010];
inline void ins(int u,int v,int w,int c)
{
e[++cnt].to=v;
e[cnt].v=w;
e[cnt].c=c;
e[cnt].from=u;
e[cnt].next=head[u];
head[u]=cnt;
}
inline void insert(int u,int v,int w,int c)
{
ins(u,v,w,c);
ins(v,u,0,-c);
}
inline int bsearch(int x)
{
int l=1,r=ans,s=0;
while(l<=r)
{
int mid=(l+r)>>1l;
if (mn[mid]<=x){s=mid;l=mid+1;}
else r=mid-1;
}
return s;
}
inline bool spfa()
{
for (int i=1;i<=T;i++)dis[i]=inf;
memset(mrk,0,sizeof(mrk));
int t=0,w=1;
dis[S]=0;q[0]=S;mrk[S]=1;
while (t!=w)
{
int now=q[t++];if (t==1005)t=0;
for (int i=head[now];i;i=e[i].next)
if (e[i].v&&dis[now]+e[i].c<dis[e[i].to])
{
dis[e[i].to]=dis[now]+e[i].c;
from[e[i].to]=i;
if (!mrk[e[i].to])
{
mrk[e[i].to]=1;
q[w++]=e[i].to;
if (w==1005)w=0;
}
}
mrk[now]=0;
}
if (dis[T]==inf)return 0;
return 1;
}
inline void mcf()
{
int x=inf;flow=0;
for (int i=from[T];i;i=from[e[i].from])
x=min(x,e[i].v);
for (int i=from[T];i;i=from[e[i].from])
{
e[i].v-=x;
e[i^1].v+=x;
flow+=x*e[i].c;
}
if (flow==-ans)tot++;
}
int main()
{
n=read();
for (int i=1;i<=n;i++)a[i]=read();
ans=1;mn[1]=a[1];
for (int i=2;i<=n;i++)
{
int fnd=bsearch(a[i]);
if (fnd==ans)mn[++ans]=a[i];
else mn[fnd+1]=a[i];
}
printf("%d\n",ans);
cnt=1;
for(int i=1;i<=n;i++)
{
insert(S,i,1,0);
insert(i+n,T,1,0);
insert(i,i+n,1,-1);
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
if (a[i]<=a[j])insert(i+n,j,1,0);
while (spfa())mcf();
printf("%d\n",tot);
memset(head,0,sizeof(head));
cnt=1;tot=0;
insert(S,1,inf,0);insert(S,n,inf,0);
insert(1+n,T,inf,0);insert(2*n,T,inf,0);
insert(1,1+n,inf,-1);insert(n,2*n,inf,-1);
for(int i=1;i<=n;i++)
{
insert(S,i,1,0);
insert(i+n,T,1,0);
insert(i,i+n,1,-1);
}
for (int i=1;i<n;i++)
for (int j=i+1;j<=n;j++)
if (a[i]<=a[j])
if (i!=1&&j!=n)insert(i+n,j,1,0);
else insert(i+n,j,inf,0);
while (spfa())mcf();
printf("%d\n",tot);
}
codevs1906 最长递增子序列问题的更多相关文章
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 【动态规划】拦截导弹_dilworth定理_最长递增子序列
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
- COGS731 [网络流24题] 最长递增子序列(最大流)
给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...
随机推荐
- ndroid调用平台功能具体技巧分享
Android操作系统那个可以通过调用手机平台来实现一些特定的功能,诸如网页的显示,邮件的发送等等.那么今天就为大家总结了几个Android调用平台功能的应用技巧,帮助大家增加编程经验. Androi ...
- diameter - degree problem
如今要构建一个网络模型,网络中的每一个节点最多和 d 个节点相连接, 且信息的传播从随意一个节点到另外随意一个节点的"最短路径" (路径依照单位路径算)都不能超过 k,问网络中最多 ...
- ORACLE函数之单行数字函数
1. ABS(X) 返回X的绝对值 SQL>SELECT ABS(-1) A,ABS(1) B,ABS(0) C FROM DUAL; A B ...
- linux boost 安装
sudo apt-get install libboost-dev 但是,我这样安装以后,编译程序时出现了很多错误,而且都是系统文件的错误.我开始以为是我的boost库版本不对,后来换了好几个版本,都 ...
- Spark HA 的搭建
接hadoop HA的搭建,因为你zookeeper已经部署完成,所以直接安装spark就可以 tar –xzf spark-1.6.1-bin-hadoop2.6.tgz -C ../service ...
- Linux shell入门基础(二)
二.shell对文本的操作 01.查看文本的命令 #cat /etc/passwd(并非对文本文件操作) #tail -5 /etc/passwd(查看末尾5行) #tail -f /var/log/ ...
- poj 3349 (最小表示法)
开始按hash做的 交上去就wa 但是和标称拍了半天也没有不一样的 可能是生成的数据太水了吧... #include<iostream> #include<cstdio> #i ...
- hdu 2105
#include <iostream> #include <stdio.h> using namespace std; int main() { double a,b,c,d, ...
- start with connect by prior学习
这是oracle中的树查询,查询出来的数据会根据上下级组成树的结构.select * from mw_sys.mwt_pd_deps start with obj_id = '63EBEC8E-E76 ...
- iOS开发中NSURL的基本操作
1.URL URL是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它. ...