通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son))。然后再dfs一次考虑节点x子树以外对节点x的贡献, 通过x的father算一算就可以了.O(N)

-----------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
 
using namespace std;
 
const double eps = 1e-8;
const int maxn = 500009;
 
int N;
double dp[maxn], p[maxn];
 
struct edge {
int to;
double w;
edge* next;
} E[maxn << 1], *pt = E, *head[maxn];
 
void AddEdge(int u, int v, double w) {
pt->to = v;
pt->w = w;
pt->next = head[u];
head[u] = pt++;
}
 
void DFS(int x, int fa = -1) {
dp[x] = 1 - p[x];
for(edge* e = head[x]; e; e = e->next) if(e->to != fa) {
DFS(e->to, x);
dp[x] *= 1 - (1 - dp[e->to]) * e->w;
}
}
 
void dfs(int x, int fa = -1) {
for(edge* e = head[x]; e; e = e->next) if(e->to != fa) {
if(e->w > eps && fabs((1 - dp[e->to]) * e->w - 1) > eps)
dp[e->to] *= 1 - (1 - dp[x] / (1 - (1 - dp[e->to]) * e->w)) * e->w;
dfs(e->to, x);
}
}
 
void Init() {
scanf("%d", &N);
for(int i = 1; i < N; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
u--, v--;
AddEdge(u, v, double(w) / 100);
AddEdge(v, u, double(w) / 100);
}
for(int i = 0; i < N; i++)
scanf("%lf", p + i), p[i] /= 100;
}
 
int main() {
Init();
DFS(0);
dfs(0);
double res = 0;
for(int i = 0; i < N; i++)
res += 1 - dp[i];
printf("%.6lf\n", res);
return 0;
}

-----------------------------------------------------------------------------------

3566: [SHOI2014]概率充电器

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 358  Solved: 158
[Submit][Status][Discuss]

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为能够覆盖所有用户的最小椭圆的半短轴长,四舍五入到三位小数。

Sample Input

样例一:
3
1 2 50
1 3 50
50 0 0
样例二:
5
1 2 90
1 3 80
1 4 70
1 5 60
100 10 20 30 40

Sample Output

样例一:
1.000000
样例二:
4.300000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

Source

BZOJ 3566: [SHOI2014]概率充电器( 树形dp )的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  2. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  3. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  4. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  5. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  6. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  7. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  8. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  9. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

随机推荐

  1. Haffman编码(haffman树)

    Haffman编码 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 哈弗曼编码大家一定很熟悉吧(不熟悉也没关系,自己查去...).现在给你一串字符以及它们所对应的权值 ...

  2. LA - 5031 - Graph and Queries

    题意:一个N个点(编号从1开始),M条边的无向图(编号从1开始),有3种操作: D X:把编号为X的边删了: Q X K:查询编号为X的结点所在连通分量第K大的元素: C X V:将编号为X的结点的权 ...

  3. UITabBarController 笔记(二) ViewController中加UITabBarController

    新建一个简单视图iOS工程,在ViewController的viewDidLoad中代码如下 - (void)viewDidLoad { [super viewDidLoad]; // Do any ...

  4. 不能以方法的方式使用不可调用的“system.web.httprequest.querystring”

    问题描述:不能以方法的方式使用不可调用的“system.web.httprequest.querystring”解决办法:Request.QueryString["GoodsID" ...

  5. return break continue 的区别

    1)break     直接跳出当前的循环,从当前循环外面开始执行,忽略循环体中任何其他语句和循环条件测试.他只能跳出一层循环,如果你的循环是嵌套循环,那么你需要按照你嵌套的层次,逐步使用break来 ...

  6. C语言处理CSV文件的方法(二)

    strtok函数的使用是一个老生常谈的问题了.该函数的作用很大,争议也很大.以下的表述可能与一些资料有区别或者说与你原来的认识有差异,因此,我尽量以实验为证.交代一下实验环境是必要的,win7+vc6 ...

  7. CentOS yum安装配置lnmp服务器(Nginx+PHP+MySQL)

    1.配置防火墙,开启80端口.3306端口 vi /etc/sysconfig/iptables-A INPUT -m state --state NEW -m tcp -p tcp --dport  ...

  8. (转载) css实现小三角(尖角)

    在各种网站里面,我们会经常看到类似于这样的尖角:(示例:新浪微博) 它实现的方式有多种,哪种才是最简单的?哪种才是最优秀的?首先我声明一下,我还不清楚这个东西具体叫什么名字(哪位知道还望告知),暂且叫 ...

  9. Windows下bat命令

    一.简单批处理内部命令简介  1.Echo 命令 打开回显或关闭请求回显功能,或显示消息.如果没有任何参数,echo 命令将显示当前回显设置.    语法  echo [{on│off}] [mess ...

  10. asp.net mvc 注册中的邮箱激活功能实现(一)

    基本流程图 注册页面就不再写出,现在将发送邮件的代码粘贴出来 public ActionResult SendEmial() { ; string validataCode = System.Guid ...