通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son))。然后再dfs一次考虑节点x子树以外对节点x的贡献, 通过x的father算一算就可以了.O(N)

-----------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
 
using namespace std;
 
const double eps = 1e-8;
const int maxn = 500009;
 
int N;
double dp[maxn], p[maxn];
 
struct edge {
int to;
double w;
edge* next;
} E[maxn << 1], *pt = E, *head[maxn];
 
void AddEdge(int u, int v, double w) {
pt->to = v;
pt->w = w;
pt->next = head[u];
head[u] = pt++;
}
 
void DFS(int x, int fa = -1) {
dp[x] = 1 - p[x];
for(edge* e = head[x]; e; e = e->next) if(e->to != fa) {
DFS(e->to, x);
dp[x] *= 1 - (1 - dp[e->to]) * e->w;
}
}
 
void dfs(int x, int fa = -1) {
for(edge* e = head[x]; e; e = e->next) if(e->to != fa) {
if(e->w > eps && fabs((1 - dp[e->to]) * e->w - 1) > eps)
dp[e->to] *= 1 - (1 - dp[x] / (1 - (1 - dp[e->to]) * e->w)) * e->w;
dfs(e->to, x);
}
}
 
void Init() {
scanf("%d", &N);
for(int i = 1; i < N; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
u--, v--;
AddEdge(u, v, double(w) / 100);
AddEdge(v, u, double(w) / 100);
}
for(int i = 0; i < N; i++)
scanf("%lf", p + i), p[i] /= 100;
}
 
int main() {
Init();
DFS(0);
dfs(0);
double res = 0;
for(int i = 0; i < N; i++)
res += 1 - dp[i];
printf("%.6lf\n", res);
return 0;
}

-----------------------------------------------------------------------------------

3566: [SHOI2014]概率充电器

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 358  Solved: 158
[Submit][Status][Discuss]

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为能够覆盖所有用户的最小椭圆的半短轴长,四舍五入到三位小数。

Sample Input

样例一:
3
1 2 50
1 3 50
50 0 0
样例二:
5
1 2 90
1 3 80
1 4 70
1 5 60
100 10 20 30 40

Sample Output

样例一:
1.000000
样例二:
4.300000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

Source

BZOJ 3566: [SHOI2014]概率充电器( 树形dp )的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  2. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  3. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  4. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  5. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  6. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  7. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  8. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  9. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

随机推荐

  1. EasyList China国内镜像

    镜像地址: http://www.ikay.me/list/easylistchina.txt 与官方服务器每15分钟同步一次 本文固定链接: http://www.ikay.me/easylistc ...

  2. POJ 1753 Flip Game (DFS + 枚举)

    题目:http://poj.org/problem?id=1753 这个题在開始接触的训练计划的时候做过,当时用的是DFS遍历,其机制就是把每一个棋子翻一遍.然后顺利的过了.所以也就没有深究. 省赛前 ...

  3. wcf 速成,转的啊 第一天

    作为WCF速成系列,只介绍些项目开发中常用到的实战知识. 学习wcf,还是对其中的几个术语要了解一下.wcf中有一个ABC的概念,就是 第一: "A" 是地址,就是告诉别人我wcf ...

  4. Windows消息传递函数SendMessage参数属性

    Windows消息传递函数SendMessage参数属性 转载于:http://www.cr173.com/html/5605_1.html Windows是一个消息驱动式系统,SendMessage ...

  5. CSS 垂直居中的5种实现方法

    利用 CSS 来实现对象的垂直居中有许多不同的方法,比较难的是选择那个正确的方法.我下面说明一下我看到的好的方法和怎么来创建一个好的居中网站.         使用 CSS 实现垂直居中并不容易.有些 ...

  6. 加密传输SSL协议4_综合方案

    隔了那么多天终于有时间继续把这个专题做完了,这次一定连续写完这方面的笔记. 上篇博文说明了非对称加密和对称加密各自的优缺点,那么就很自然的衍生出了一种综合的方案. 两种方案的结合--扬长避短 首先发送 ...

  7. Linux学习之find命令

    find是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. exec解释: -exec  参数后面跟的是command ...

  8. Cross-site scripting

    Cross-site scripting (XSS) is a type of computer security vulnerability typically found in Web appli ...

  9. 分析JavaScript代码应该放在HTML代码哪个位置比较好

    本文总结了多种放置JS代码的方法,需要的朋友可以参考下 在哪里放置 JavaScript 代码? 通常情况下,JavaScript 代码是和 HTML 代码一起使用的,可以将 JavaScript 代 ...

  10. mysql函数操作

    <?php try{ $dbh = new PDO('mysql:dbname=testdb;host=localhost', 'mysql_user', 'mysql_pwd'); }catc ...