POJ1797 Heavy Transportation 【Dijkstra】
| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 21037 | Accepted: 5569 |
Description
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Output
the scenario with a blank line.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
Source
题意:求点1到n的最小割。
先尝试了下DFS,结果TLE。
#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} void DFS(int k, int dis) {
if(k == n) {
if(dis > ans) ans = dis;
return;
}
for(int i = head[k]; i != -1; i = E[i].next) {
if(!vis[E[i].v]) {
int pre = dis;
vis[E[i].v] = 1;
if(E[i].c < dis) dis = E[i].c;
DFS(E[i].v, dis);
dis = pre; vis[E[i].v] = 0;
}
}
} void solve() {
ans = 0;
memset(vis, 0, sizeof(bool) * (n + 1));
vis[1] = 1; DFS(1, inf);
printf("Scenario #%d:\n%d\n\n", cas++, ans);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}
然后尝试了下Dijkstra,过了..dis数组存储当前点到源点的最小割。
#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
int dis[maxn];
bool vis[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} int getNext() {
int pos = -1, val = 0;
for(int i = 1; i <= n; ++i)
if(dis[i] > val && !vis[i]) {
val = dis[i]; pos = i;
}
return pos;
} void Dijkstra(int start, int end) {
memset(dis, 0, sizeof(int) * (n + 1));
dis[start] = inf;
int i, u = start, v;
while(u != -1) {
vis[u] = 1;
if(u == end) return;
for(i = head[u]; i != -1; i = E[i].next) {
if(!vis[v = E[i].v]) dis[v] = max(dis[v], min(E[i].c, dis[u]));
}
u = getNext();
}
} void solve() {
memset(vis, 0, sizeof(bool) * (n + 1));
Dijkstra(1, n);
printf("Scenario #%d:\n%d\n\n", cas++, dis[n]);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}
POJ1797 Heavy Transportation 【Dijkstra】的更多相关文章
- POJ--1797 Heavy Transportation (最短路)
题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- (Dijkstra) POJ1797 Heavy Transportation
Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 53170 Accepted: ...
- POJ 1797 Heavy Transportation (Dijkstra变形)
F - Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & ...
- 【Dijkstra】
[摘自]:华山大师兄,推荐他的过程动画~ myth_HG 定义 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩 ...
- POJ 1797 Heavy Transportation (dijkstra 最小边最大)
Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...
- POJ1797 Heavy Transportation —— 最短路变形
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ1797 Heavy Transportation (堆优化的Dijkstra变形)
Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...
- POJ 1797 Heavy Transportation 【最大生成树的最小边/最小瓶颈树】
Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...
随机推荐
- 输入输出函数库stdio.h
函数名 函数类型与形参类型 函数功能 函数返回值 clearerr void clearerr(fp) FILE * fp; 清除文件指针错误 无 close int close(fp) int fp ...
- GridView分页功能的实现
当GridView中显示的记录很多的时候,可以通过GridView的分页功能来分页显示这些记录.如果GridView是直接绑定数据库,则很简单:将"启动分页"打勾即可. 如果是用代 ...
- 关于BFC
参考 http://www.html-js.com/article/1866(很棒! 还有栗子) http://www.cnblogs.com/lhb25/p/inside-block-format ...
- 《转》JAVA并发编程:volatile关键字解析
volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以 ...
- e.currentTarget
e.target总是指向点击的目标 e.currentTarget会指向这个点击标的冒泡对象 <div class="wrap"> wrap <div class ...
- IQC,QA,FQC,OQC,IPQC的定义与职责
进货检验员(IQC):CLInetLabIQC(以下简称IQC)是CLInet在多年开发维护EQA(实验室间质量评价)系统后,成功开发的一套完善的实验室内部的质量评价.质量控制的软件.它不仅包含了每家 ...
- 具有 CSA CCM 证明的 SOC 2 可简化 Windows Azure 客户的安全性评估过程
编辑人员注释:本文章由 Windows Azure 产品市场营销总监 Sarah Fender 撰写. 今天,我们宣布 Microsoft 的公共审计师 Deloitte 已经发布了有关 Window ...
- Android eng版系统烧录
这里我只能记录下过程 Android有四层,最底层的Linux是一个kernel,然后是运行时库层,驱动大部分在这两层完成,接着是Framework层,主要是Android源码,最后是在源码基础上进行 ...
- Android 架构【转】
import java.util.ArrayList; import java.util.List; import android.app.Activity; import android.app ...
- JS HTML DOM
HTML DOM (文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model). HTML DOM 模型被构造为对象的树. HTML DOM 树 通过 ...