Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 21037   Accepted: 5569

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意:求点1到n的最小割。

先尝试了下DFS,结果TLE。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} void DFS(int k, int dis) {
if(k == n) {
if(dis > ans) ans = dis;
return;
}
for(int i = head[k]; i != -1; i = E[i].next) {
if(!vis[E[i].v]) {
int pre = dis;
vis[E[i].v] = 1;
if(E[i].c < dis) dis = E[i].c;
DFS(E[i].v, dis);
dis = pre; vis[E[i].v] = 0;
}
}
} void solve() {
ans = 0;
memset(vis, 0, sizeof(bool) * (n + 1));
vis[1] = 1; DFS(1, inf);
printf("Scenario #%d:\n%d\n\n", cas++, ans);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

然后尝试了下Dijkstra,过了..dis数组存储当前点到源点的最小割。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
int dis[maxn];
bool vis[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} int getNext() {
int pos = -1, val = 0;
for(int i = 1; i <= n; ++i)
if(dis[i] > val && !vis[i]) {
val = dis[i]; pos = i;
}
return pos;
} void Dijkstra(int start, int end) {
memset(dis, 0, sizeof(int) * (n + 1));
dis[start] = inf;
int i, u = start, v;
while(u != -1) {
vis[u] = 1;
if(u == end) return;
for(i = head[u]; i != -1; i = E[i].next) {
if(!vis[v = E[i].v]) dis[v] = max(dis[v], min(E[i].c, dis[u]));
}
u = getNext();
}
} void solve() {
memset(vis, 0, sizeof(bool) * (n + 1));
Dijkstra(1, n);
printf("Scenario #%d:\n%d\n\n", cas++, dis[n]);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

POJ1797 Heavy Transportation 【Dijkstra】的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  5. 【Dijkstra】

    [摘自]:华山大师兄,推荐他的过程动画~   myth_HG 定义 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩 ...

  6. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  7. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  9. POJ 1797 Heavy Transportation 【最大生成树的最小边/最小瓶颈树】

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

随机推荐

  1. sql语句中特殊函数的用法

    1.concat CONCAT(字串1, 字串2, 字串3, ...): 将字串1.字串2.字串3,等字串连在一起. 例如: Geography 表格 region_name     store_na ...

  2. 浅谈Qt事件的路由机制:鼠标事件

    请注意,本文是探讨文章而不是教程,是根据实验和分析得出的结果,可能是错的,因此欢迎别人来探讨和纠正. 这几天对于Qt的事件较为好奇,平时并不怎么常用,一般都是用信号,对于事件的处理,一般都是需要响应键 ...

  3. Chrome NativeClient创建 (转)

    Chrome NativeClient创建 该demo目标是让chrome扩展启动本地exe 1创建一个名叫nativeMsgDemo的控制台程序 #include <Windows.h> ...

  4. BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )

    BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...

  5. SQL 处理空值

    问题: 在数据库中经常会有为null和''的值的列,在查询的时候,我们需要将它们转化成有效的值. 解决方案: 在emp表中的comm注释有的为null有的为'',在查询的时候 我们希望没有注释的显示为 ...

  6. svn添加强制注释,pre-commit结合python

    鉴于组内有些人在提交代码的时候并不写注释,而且没有固定格式,所以准备给svn提交时增加强制注释. 首先找到代码库里的hooks目录,正常建svn库的时候都有这个目录.进入hooks目录,找到pre-c ...

  7. Javascript实现DIV的隐藏和出现

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  8. "笨方法学python"

    <笨方法学python>.感觉里面的方法还可以.新手可以看看... 本书可以:教会你编程新手三种最重要的技能:读和写.注重细节.发现不同.

  9. 专访CEO何朝曦:深信服高速成长的秘诀

    在深信服公司深圳总部的办公室里,要迅速找到几位高管的工位远远不如找一位女员工的座位那样容易. 深信服CEO何朝曦先生 公司里虽然女孩很少,但几乎每位女员工的工位上都有一盆绿植.相比之下,从公司CEO何 ...

  10. NGUI使用教程(1) 安装NGUI插件

    前言 鉴于当前游戏开发的大势,Unity3d的发展势头超乎我的预期,作为一个Flash开发人员,也是为Flash在游戏开发尤其是手游开发中的地位感到担忧....所以 近期一段时间都在自己学习unity ...