Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 21037   Accepted: 5569

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意:求点1到n的最小割。

先尝试了下DFS,结果TLE。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} void DFS(int k, int dis) {
if(k == n) {
if(dis > ans) ans = dis;
return;
}
for(int i = head[k]; i != -1; i = E[i].next) {
if(!vis[E[i].v]) {
int pre = dis;
vis[E[i].v] = 1;
if(E[i].c < dis) dis = E[i].c;
DFS(E[i].v, dis);
dis = pre; vis[E[i].v] = 0;
}
}
} void solve() {
ans = 0;
memset(vis, 0, sizeof(bool) * (n + 1));
vis[1] = 1; DFS(1, inf);
printf("Scenario #%d:\n%d\n\n", cas++, ans);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

然后尝试了下Dijkstra,过了..dis数组存储当前点到源点的最小割。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
int dis[maxn];
bool vis[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} int getNext() {
int pos = -1, val = 0;
for(int i = 1; i <= n; ++i)
if(dis[i] > val && !vis[i]) {
val = dis[i]; pos = i;
}
return pos;
} void Dijkstra(int start, int end) {
memset(dis, 0, sizeof(int) * (n + 1));
dis[start] = inf;
int i, u = start, v;
while(u != -1) {
vis[u] = 1;
if(u == end) return;
for(i = head[u]; i != -1; i = E[i].next) {
if(!vis[v = E[i].v]) dis[v] = max(dis[v], min(E[i].c, dis[u]));
}
u = getNext();
}
} void solve() {
memset(vis, 0, sizeof(bool) * (n + 1));
Dijkstra(1, n);
printf("Scenario #%d:\n%d\n\n", cas++, dis[n]);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

POJ1797 Heavy Transportation 【Dijkstra】的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  5. 【Dijkstra】

    [摘自]:华山大师兄,推荐他的过程动画~   myth_HG 定义 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩 ...

  6. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  7. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  9. POJ 1797 Heavy Transportation 【最大生成树的最小边/最小瓶颈树】

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

随机推荐

  1. 一个人的旅行(用小技巧转化为dijkstra算法)

    注意: 1:因为两点之间可能有多条路,所以更新路径长度的时候做一次判断 if(time < mat[a][b]) mat[a][b] = mat[b][a] = time; 2:因为主函数中的数 ...

  2. 代码风格——Cocos2d-x学习历程(四)

    1.Cocos2d-x拥有一个包含其他所有头文件的文件"cocos2d.h".通常,我们只需要在使用时包含这个头文件,就可以使用引擎的全部功能了. 2.Cocos2d-x的类都放置 ...

  3. BZOJ 1217: [HNOI2003]消防局的设立( 贪心 )

    一个简单的贪心, 我们只要考虑2个消防局设立的距离为5时是最好的, 因为利用最充分. 就dfs一遍, 再对根处理一下就可以了. 这道题应该是SGU某道题的简化版...这道题距离只有2, 树型dp应该也 ...

  4. ROS中编辑文件命令行工具rosed

    rosed是rosbash套件中的一个,它允许我们通过包名直接编辑包中的文件,而不是输入包的全部路径. 用法: rosed [package_name] [filename] 例如: rosed ro ...

  5. Java中的流程控制(一)

    程序的流程控制(一) 关于Java程序的流程控制(一) 从结构化程序设计角度出发,程序有三种结构: 顺序结构 选择结构 循环结构 1.顺序结构 就是程序从上到下一行行执行,中间没有判断和跳转. 2.i ...

  6. hadoop搭建杂记:Linux下hadoop的安装配置

    VirtualBox搭建伪分布式模式:hadoop的下载与配置 VirtualBox搭建伪分布式模式:hadoop的下载与配置 由于个人机子略渣,无法部署XWindow环境,直接用的Shell来操作, ...

  7. RecyclerView 小记

    RecyclerView,是在v7包加入的,一个灵活的view可以展示巨大的数据集,类似于listview的viewholder复用已经优化好了. 语言是苍白的,代码是最生动的叙说: 布局: < ...

  8. Use API to retrieve data from internet

    Reference: Working with APIs Many big companies and organizations provide API for us to retrieve dat ...

  9. 测试scanf输入含非法控制符

    心得: 学到scanf命令时第一个想到的就是可以利用scanf做一个十进制转16进制.八进制的小程序,很天真的以为也可以转二进制,在搜索字符控制符的时候才知道原来没有二进制的控制字符,需要换算出来得出 ...

  10. MYSQL group_concat() 函数

    看来看一下表中的数据 select * from t; 下一步来看一下group_concat函数的用法 select ID,group_concat(Name) from t group by ID ...