Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 21037   Accepted: 5569

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意:求点1到n的最小割。

先尝试了下DFS,结果TLE。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} void DFS(int k, int dis) {
if(k == n) {
if(dis > ans) ans = dis;
return;
}
for(int i = head[k]; i != -1; i = E[i].next) {
if(!vis[E[i].v]) {
int pre = dis;
vis[E[i].v] = 1;
if(E[i].c < dis) dis = E[i].c;
DFS(E[i].v, dis);
dis = pre; vis[E[i].v] = 0;
}
}
} void solve() {
ans = 0;
memset(vis, 0, sizeof(bool) * (n + 1));
vis[1] = 1; DFS(1, inf);
printf("Scenario #%d:\n%d\n\n", cas++, ans);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

然后尝试了下Dijkstra,过了..dis数组存储当前点到源点的最小割。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
int dis[maxn];
bool vis[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} int getNext() {
int pos = -1, val = 0;
for(int i = 1; i <= n; ++i)
if(dis[i] > val && !vis[i]) {
val = dis[i]; pos = i;
}
return pos;
} void Dijkstra(int start, int end) {
memset(dis, 0, sizeof(int) * (n + 1));
dis[start] = inf;
int i, u = start, v;
while(u != -1) {
vis[u] = 1;
if(u == end) return;
for(i = head[u]; i != -1; i = E[i].next) {
if(!vis[v = E[i].v]) dis[v] = max(dis[v], min(E[i].c, dis[u]));
}
u = getNext();
}
} void solve() {
memset(vis, 0, sizeof(bool) * (n + 1));
Dijkstra(1, n);
printf("Scenario #%d:\n%d\n\n", cas++, dis[n]);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

POJ1797 Heavy Transportation 【Dijkstra】的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  5. 【Dijkstra】

    [摘自]:华山大师兄,推荐他的过程动画~   myth_HG 定义 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩 ...

  6. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  7. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  9. POJ 1797 Heavy Transportation 【最大生成树的最小边/最小瓶颈树】

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

随机推荐

  1. 提供一段Excel获取Title的标题,类似于A、AA、AAA,我们操作Excel的时候通常根据次标题来获取一定的操作范围。

    /******************************************** FormatExcelColumTitle Purpose Get excel title like &qu ...

  2. 小鱼提问1 类中嵌套public修饰的枚举,外部访问的时候却只能Class.Enum这样访问,这是为何?

    /// <summary> /// 常量等定义 /// </summary> public class General { /// <summary> /// 文件 ...

  3. 拔一拔 ExtJS 3.4 里你遇到的没遇到的 BUG(1)

    本文从今天开始,我要做的就是不断的更新,不断的披露ExtJS 3.4的BUG并修复它.需要注意的是版本为3.4而不是4.0,因为4.0改动和变化比较大,所以不要对号入座. 嘿嘿,本人不怎么写东西,不过 ...

  4. Centos6.4 搭建Git服务器 (最简单的方法)

    下载 git-1.8.2.tar.gz tar -zvxf git-1.8.2.tar.gz cd git-1.8.2.2 sudo make prefix=/usr/local/git all su ...

  5. ThinkPHP实现导出

    刚开始做项目的时候,遇到了这个需求.说实话,对于一个才出来实习的菜鸟,而且还是才接触PHP的菜鸟而言,实在是有心杀敌,无力回天啊. 最简单的方法,就是网上找一个插件,然后一个本来就十几兆的项目,又增加 ...

  6. [LeetCode]题解(python):141-Linked List Cycle

    题目来源: https://leetcode.com/problems/linked-list-cycle/ 题意分析: 给定一个链表,判断链表是否有环.要求O(1)空间时间复杂度. 题目思路: 用快 ...

  7. Windows 取得至高无上的权限

    第一步:gpedit.msc 第二步:计算机配置-->windows 设置 -->安全设置 -->安全选项 -->用户账户控制 -->以管理员批准模式运行所有管理员 -- ...

  8. 窗口嵌入到另一个窗口(VC和QT都有)

    1.用vc新建一个dialog1工程.属性默认. 2.insert一个dialog2,改为child. 3.在dialog1中包含dialog2头文件,在一个按钮事件中显示dialog2: Cdial ...

  9. Andy's First Dictionary

    Description Andy, 8, has a dream - he wants to produce his very own dictionary. This is not an easy ...

  10. Android 开发笔记“浅谈DDMS视图”

    DDMS 的全称是Dalvik Debug Monitor Service,即Dalvik调试监控服务,是一个可视化的调试监控工具.它主要是对系统运行后台日志的监控,还有系统线程,模拟器状态的监控.此 ...