\[\texttt{Preface}
\]

数据貌似很水,据说 \(A_i\leq n\) ,连离散化都不需要。

不知道为啥设块大小为 \(\frac{n}{\sqrt m}\) 会一直 Runtime Error on test 1,3,4 ,改成 \(\sqrt n\) 就 \(A\) 了,据说是 \(m=0\) 的问题,但我明明特判了阿 qwq 。

\[\texttt{Description}
\]

给出一个长度为 \(n\) 的序列 \(A\) ,一共 \(m\) 次询问,每次需要回答 " 区间 \([l,r]\) 内有多少个位置上的数的大小在 \([a,b]\) 内" 以及 " 区间 \([l,r]\) 内出现的所有数中,有多少个数的大小在 \([a,b]\) 内 " 。

\[\texttt{Solution}
\]

莫队 \(+\) 树状数组。

我们知道莫队可以解决 " 区间内数的出现次数 " 这类问题。

在上文提到的,\(A_i \leq n\) 。

所以可以直接开个两个桶,c[x][1] 表示值为 \(x\) 的数的出现次数,c[x][2] 表示值为 \(x\) 的数有没有出现过。

然后我们发现每个询问答案要求的其实是 \(\sum\limits_{i=a}\limits^b c[i][1]\) 和 \(\sum\limits_{i=a}\limits^b c[i][2]\) ,本质上是一个区间求和,但是它还需要支持单点修改(插入和删除)。

于是我们可以用一个 支持 \(O(\log n)\) 单点修改以及区间求和的数据结构 维护这两个桶,此时树状数组就是一个不错的选择。

时间复杂度 \(O(n \sqrt n \log n)\) 。

\[\texttt{Code}
\]

#include<cstdio>
#include<algorithm>
#include<cmath> #define RI register int using namespace std; inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
return x*f;
} const int N=100100,M=100100,MaxV=100100; int n,m;
int S; int block(int x)
{
return (x-1)/S+1;
} int a[N]; struct ask{
int l,r;
int a,b;
int id;
int ans1,ans2;
}q[M]; bool cmp(ask a,ask b)
{
return block(a.l)==block(b.l)?a.r<b.r:a.l<b.l;
} bool rebuild(ask a,ask b)
{
return a.id<b.id;
} int cnt[MaxV];//再开一个辅助桶便于维护 int c[MaxV][3]; void BITadd(int x,int t,int val)
{
for(;x<=n;x+=x&-x)c[x][t]+=val;
} int BITask(int x,int t)
{
int ans=0;
for(;x;x-=x&-x)ans+=c[x][t];
return ans;
} void add(int x)
{
cnt[a[x]]++;
BITadd(a[x],1,1);
if(cnt[a[x]]==1)BITadd(a[x],2,1);
} void sub(int x)
{
cnt[a[x]]--;
BITadd(a[x],1,-1);
if(cnt[a[x]]==0)BITadd(a[x],2,-1);
} int main()
{
n=read(),m=read(); if(!m)
return 0; S=sqrt(n); for(RI i=1;i<=n;i++)
a[i]=read(); for(RI i=1;i<=m;i++)
q[i].l=read(),q[i].r=read(),q[i].a=read(),q[i].b=read(),q[i].id=i; sort(q+1,q+1+m,cmp); int l=1,r=0;
for(RI i=1;i<=m;i++)
{
while(r<q[i].r)add(++r);
while(r>q[i].r)sub(r--);
while(l<q[i].l)sub(l++);
while(l>q[i].l)add(--l); q[i].ans1=BITask(q[i].b,1)-BITask(q[i].a-1,1);
q[i].ans2=BITask(q[i].b,2)-BITask(q[i].a-1,2);
} sort(q+1,q+1+m,rebuild); for(RI i=1;i<=m;i++)
printf("%d %d\n",q[i].ans1,q[i].ans2); return 0;
}

\[\texttt{Thanks} \ \texttt{for} \ \texttt{watching}
\]

题解【[AHOI2013]作业】的更多相关文章

  1. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  2. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  3. 【Luogu4396】[AHOI2013]作业(莫队)

    [Luogu4396][AHOI2013]作业(莫队) 题面 洛谷 题解 模板题 #include<iostream> #include<cstdio> #include< ...

  4. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  5. BZOJ 3236: [Ahoi2013]作业

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1393  Solved: 562[Submit][Status ...

  6. BZOJ 3236: [Ahoi2013]作业( 莫队 + BIT )

    莫队..用两个树状数组计算.时间复杂度应该是O(N1.5logN). 估计我是写残了...跑得很慢... ----------------------------------------------- ...

  7. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  8. [AHOI2013]作业

    [AHOI2013]作业 题目大意: 给定一个长度为\(n(n\le10^5)\)的数列\(A(1\le A_i\le n)\).\(m(m\le10^6)\)次询问,每次询问区间\([l,r]\)内 ...

  9. BZOJ3236: [AHOI2013]作业

    BZOJ3236: [AHOI2013]作业 题目描述 传送门 行,我知道是Please contact lydsy2012@163.com! 传送门2 题目分析 这题两问还是非常,emmmm. 首先 ...

  10. bzoj 3236: [Ahoi2013]作业(缺线段树)

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1744  Solved: 702[Submit][Status ...

随机推荐

  1. Ant Design框架中不同的组件访问不同的models中的数据

    Ant Design框架中不同的组件访问不同的models中的数据 本文记录了我在使用该框架的时候踩过的坑,方便以后查阅. 一.models绑定 在某个组件(控件或是页面),要想从某个models中获 ...

  2. springboot多环境(dev,test,prod)配置

    前情提要 在我们开发工作中,常常因为配置的问题,搞得头昏脑大.开发环境.测试环境.配置各不相同,数据库.redis.注册中心等等参数都不一致,如果放在同一个配置文件,就会发现诸多注释,发布不同的环境, ...

  3. codevs 3981 动态最大子段和(线段树)

    题目传送门:codevs 3981 动态最大子段和 题目描述 Description 题目还是简单一点好... 有n个数,a[1]到a[n]. 接下来q次查询,每次动态指定两个数l,r,求a[l]到a ...

  4. GitHub项目绑定自己的域名

    github博客搭建:https://blog.csdn.net/walkerhau/article/details/77394659?utm_source=debugrun&utm_medi ...

  5. 超级火的java自学网站

    学靠的是毅力和自律,一定要坚持,否则就会前功尽弃,我自己也一直在边学边工作,当然自学要配合好的学习资料. 我是通过这个地方去学习的,它可以添加学习计划,从java基础到高级,从后台到前端,从细节到框架 ...

  6. crawler 听课笔记 碎碎念 2 一些爬虫须知的基本常识和流程

    html的宗旨:      <标签 属性=”属性的值“></标签>        只是对于文本的一种解释划分吧 dom的宗旨:      就是一个大数组,处理方便,效率低 xm ...

  7. numpy 其它常用方法

    一.创建特殊的数组 1.ones() 语法 np.ones(shape, dtype=None) # shape 创建数组的shape # dtype 指定数组的数据类型 例子 import nump ...

  8. 【Oracle】复制表结构和表数据

    1.既复制表结构也复制表数据:CREATE TABLE tab_new AS SELECT * FROM tab_old; 2.只复制表结构:CREATE TABLE tab_new AS SELEC ...

  9. JavaScript中this的使用及含义(总结)

    this 1.谁调用,指向谁 2.事件监听函数中,this指向,绑定监听函数的那一个元素节点 即,谁绑,指向谁 3.当一个函数没有被其他对象调用时,(普通调用),this指向全局对象(严格模式下面是u ...

  10. kafka for centos7

    https://blog.csdn.net/wqh8522/article/details/79163467