BZOJ 2660 (BJOI 2012) 最多的方案
Description
第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数。现在给一个正整数N,它可以写成一些斐波那契数的和的形式。如果我们要求不同的方案中不能有相同的斐波那契数,那么对一个N最多可以写出多少种方案呢?
Input
只有一个整数N。
Output
一个方案数
Sample Input
16
Sample Output
4
HINT
Hint:16=3+13=3+5+8=1+2+13=1+2+5+8
对于30%的数据,n<=256
对于100%的数据,n<=10^18
————————————————————————————–
题解
首先,任何数都能分解成几个斐波那契数列的和(一定有解),所以先将这个数字拆成几个斐波那契数相
加的形式,编号记为pos[i],又因为每个斐波那契数可以分解继续成接下来的两项之和,我们就要考虑
pos[i]与pos[i-1]的位置关系与其元素是否继续分解。
dp[i][0/1]表示斐波那契中第i项替换或不替换。
转移方程为:
dp[i][1]=dp[i-1][0]+dp[i-1][1];
dp[i][0]=dp[i-1][0]*(pos[i]-pos[i-1]>>1)+dp[i][1]*(pos-pos[i-1]-1>>1);
代码
#include<bits/stdc++.h>
using namespace std;
long long n,fab[90];
int cnt,pos[90],dp[90][2];
int main(){
fab[1]=1;fab[2]=2;
cin>>n;
for(register int i=3;i<=85;i++)
fab[i]=fab[i-1]+fab[i-2];
for(register int i=85;i>=1;i--)
if(n>=fab[i]){
n-=fab[i];
pos[++cnt]=i;
}
sort(pos+1,pos+1+cnt);
dp[1][1]=1;dp[1][0]=pos[1]-1>>1;
for(register int i=2;i<=cnt;i++){
dp[i][1]=dp[i-1][0]+dp[i-1][1];
dp[i][0]=dp[i-1][0]*(pos[i]-pos[i-1]>>1)+dp[i-1][1]*(pos[i]-pos[i-1]-1>>1);
}
cout<<dp[cnt][0]+dp[cnt][1]<<endl;
return 0;
}
BZOJ 2660 (BJOI 2012) 最多的方案的更多相关文章
- bzoj 2660: [Beijing wc2012]最多的方案
Time Limit: 5 Sec Memory Limit: 128 MB Submit: 617 Solved: 361[Submit][Status][ ...
- bzoj 2660: [Beijing wc2012]最多的方案【dp】
有点神奇的dp 首先注意到任意一个数都能被表示成若干个斐波那契数的和的形式 先求出n可以字典序最大的表示 设f[i][0/1]表示第i个斐波那契数选或者不选 如果当前数不选,那就选比他小的两个数,否则 ...
- bzoj2660最多的方案
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出 选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...
- bzoj2660: [Beijing wc2012]最多的方案
题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...
- [CF126D]Fibonacci Sums/[BJOI2012]最多的方案
[CF126D]Fibonacci Sums/[BJOI2012]最多的方案 题目大意: 将\(n(n\le10^9)\)表示成若干个不同斐波那契数之和的形式,求方案数. 思路: 如果不考虑\(0\) ...
- BJOI2012 最多的方案
BJOI2012 最多的方案 Description 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数 ...
- BZOJ.2660.[BJOI2012]最多的方案(DP)
题目链接 首先我们知道: 也很好理解.如果相邻两项出现在斐波那契表示法中,那它们显然可以合并. 所以我们能得到\(n\)的斐波那契表示,记\(pos[i]\)为\(n\)的斐波那契表示法中,第\(i\ ...
- bzoj千题计划213:bzoj2660: [Beijing wc2012]最多的方案
http://www.lydsy.com/JudgeOnline/problem.php?id=2660 很容易想到是先把n表示成最大的两个斐波那契数相加,然后再拆分这两个斐波那契数 把数表示成斐波那 ...
- [BJOI2012]最多的方案(记忆化搜索)
第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...
随机推荐
- CentOS7.6安装Go-1.12.9
安装步骤 Go的官网:https://golang.google.cn 1. 下载压缩包 wget https://dl.google.com/go/go1.12.9.linux-amd64.tar. ...
- 爬虫那些事儿--Http返回码
由于爬虫的抓取也是使用http协议交互.因此需要了解Http的各种返回码所代表的意义,才能判断爬虫的执行结果. 返回码如下: 100 Continue 初始的请求已经接受,客户应当继续发送请求的其余部 ...
- Java微服务(Spring-boot+MyBatis+Maven)入门教程
1,项目创建 新建maven项目,如下图: 选择路径,下一步 输入1和2的内容,点完成 项目创建完毕,结构如下图所示: 填写pom.xml里内容,为了用于打包,3必须选择jar,4和5按图上填写 ...
- 固定Linux虚拟IP地址
由于我的开发环境是在VMWare虚拟机里安装Centos,然后在host文件中设置拦截,这样就可以直接跳转虚拟机的CentOS,但是虚拟机的IP地址总是会变,就要随时修改host文件,很麻烦.决定虚拟 ...
- line-height 行高的使用
line-height:normal; 默认 字体 line-height:1.5; line-height:200%; line-height:50px; ps : 固定的值 line-heig ...
- mysql 8+ 忘记root密码 解决方案
在安装完数据库后,由于自己不小心直接关闭了安装窗口,或者长时间没有使用root用户登录系统,导致忘记了root密码,这时就需要重置MySQL的root密码.当然,最简单方式自然是删除数据库的data目 ...
- 关于CheckListBox触发ItemCheck事件的问题
开发时遇到一个有趣的问题,我们需要CheckListBox可以实现单选功能,因为默认是多选的,开始我写的代码如下: void cb_ItemCheck(object sender,ItemCheckE ...
- ElasticSearch再学习
ElasticSearch参数详解 本次使用的windows的版本,如若Linux移步:https://www.cnblogs.com/msi-chen/p/10335794.html 配置文件参数 ...
- Spring Data之Example<>
简单CRUD之Example动态查询 简单介绍 (部分口水话,部分来自网络,代码永远自产) 使用过Spring全家桶的各位大佬应该都知道,Spring Data这个是Spring对持久层框架的封装,比 ...
- Ruby 命令行选项
Ruby 命令行选项 Ruby 一般是从命令行运行,方式如下: $ ruby [ options ] [.] [ programfile ] [ arguments ... ] 解释器可以通过下列选项 ...