题解 LA3720
题目大意 多组数据,每组数据给定两个整数 \(n,m\),请求出 \(n\times m\) 的点阵(即 \((n-1)\times(m-1)\) 的方格)中有多少条非水平竖直的经过至少两个格点的不同直线。
分析 这道题有多种解法,这里给出最经典的,使用容斥原理的解法。
令 \(dp[i][j]\) 表示 \(i\times j\) 的方格中,经过 \((0,0)\) 顶点的所有至少经过两个点的不同直线数(比如 \(dp[3][2]=5\))。

不难发现,\(dp\) 数组满足可加可减性,也即可以用容斥原理来递推。且点 \((i,j)\) 当且仅当 \(GCD(i,j)=1\) 时可以为 \(dp[i][j]\) 贡献 \(1\)。所以有
\]
现在考虑如何用 \(dp\) 数组来递推出最终答案。我们记 \(i\times j\) 方格中从左下到右上的不同直线数为 \(ans[i][j]\),则最终答案为 \(2\times ans[i][j]\)(比如 \(ans[3][2]=14\))。

不难看出,\(ans\) 数组也满足可加可减性,可以用容斥原理来递推。且点 \((i,j)\) 构成的新直线当且仅当它在 \(dp[i][j]\) 中而不在 \(dp[i/2][j/2]\) 中才有贡献,这是因为如果它在被重复计算过则一定在 \(dp[i/2][j/2]\) 中被计算过(为什么),所以有
\]
#include<bits/stdc++.h>
using namespace std;
const int maxn = 305;
const int maxm = 305;
int n, m;
int dp[maxn][maxm];
int ans[maxn][maxm];
void Init(int N, int M)
{
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= M; ++j)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + (__gcd(i, j) == 1);
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= M; ++j)
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + dp[i][j] - dp[i / 2][j / 2];
}
int main()
{
Init(300, 300);
while(~scanf("%d%d", &n, &m) && n && m)
printf("%d\n", 2 * ans[n - 1][m - 1]);
}
题解 LA3720的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Python--day30--网络基础
单波: 查找mac:
- springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)
前言: RabbitMQ相关知识请参考: https://www.jianshu.com/p/cc3d2017e7b3 Linux安装RabbitMQ请参考: https://www.jianshu. ...
- #干货#小微信贷风控中类IPC模式和集中审批模式
浅析小微信贷风控中类IPC模式和集中审批模式 席占斌 常言道瑕不掩瑜,反过来讲瑜自然也不能掩瑕,看问题需要客观公正辩证. 在小微信贷中,风控模式依旧是核心,目前比较流行和占比较大的风控模式有很经典的I ...
- [学习笔记]k短路
A*:我已经忘了怎么写了,反正n=30,m=1000都能卡掉... 正解:可持久化左偏树+堆维护可能集合 原论文:http://www.docin.com/p-1387370338.html 概括: ...
- P1086 最大素数积
题目描述 我们称一个整数 \(x\) 是"素数积"当且仅当 \(x = a \times b\) 并且 \(a\) 和 \(b\) 都是素数. 现在告诉你一个数 \(N(1 \le ...
- JAXB常用注解讲解(超详细)
简介: JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生Java类的技术.该过程中,JAXB也提供了将XML实例 ...
- SpringBoot 上传文件到linux服务器 异常java.io.FileNotFoundException: /tmp/tomcat.50898……解决方案
SpringBoot 上传文件到linux服务器报错java.io.FileNotFoundException: /tmp/tomcat.50898-- 报错原因: 解决方法 java.io.IOEx ...
- WPF 使用 SharpDx 异步渲染
本文告诉大家如何通过 SharpDx 进行异步渲染,但是因为在 WPF 是需要使用 D3DImage 画出来,所以渲染只是画出图片,最后的显示还是需要 WPF 在他自己的主线程渲染 本文是一个系列,希 ...
- H3C保存当前配置--用户图示(console)以上
<H3C>save //此种保存只默认保存为Startup.cfg ,系统默认是加载此文件 The current configuration will be writte ...
- ASP.NET MVC4.0+EF+LINQ+bui+bootstrap+网站+角色权限管理系统(2)
创建公共分页参数类Common/GridPager.cs using System; using System.Collections.Generic; using System.Linq; usin ...