Description

为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙。\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作。

\(Yopilla\) 来到了迷失大陆的核心地域。每个单位时间,这片地域就会随机生成一种原料。每种原料被生成的概率是不同的,第 \(i\) 种原料被生成的概率是 \(\frac{p_i}{m}\) 。如果 \(Yopilla\) 没有这种原料,那么就可以进行收集。

\(Yopilla\) 急于知道,他收集到任意 \(k\) 种原料的期望时间,答案对 998244353 取模。

Input

第一行三个数 \(n,k,m\) 。

第二行 \(n\) 个数 \(p_1, p_2, ..., p_n\) 。

Output

输出一行。

Sample Input

3 3 3

1 1 1

Sample Output

499122182

HINT

对于 \(10 \%\) 的数据,\(p_1 = p_2 = ... = p_m\)

对于另外 \(10 \%\) 的数据,\(k = n\) 。

对于 \(70 \%\) 的数据,\(n \leq 100\)。

对于 \(100 \%\) 的数据,\(1 \leq n \leq 1000\) ,\(1 \leq k \leq n,\) \(| n - k | \leq 10\), \(0 \leq p_i \leq m\) , $ \sum p = m$, \(1 \leq m \leq 10000\) 。


想法

首先,看到“收集”“期望”这种字眼,就套路地想到 \(MIN-MAX\) 容斥

而这道题相当于求第 \(K\) 小的期望收集到的时间,那就是扩展 \(MIN-MAX\) 容斥

鉴于 \(|n-k|\leq 10\) ,不妨令 \(K=n-K+1\) ,改求第 \(K\) 大。

上式子, \(K-MAX(S)=\sum\limits_{T \subseteq S} (^{|T|-1}_{K-1}) \cdot (-1)^{|T|-K} \cdot \frac{m}{\sum\limits_{i \in T} p_i}\)

(证明挺容易的,就是二项式反演,略过……)

发现 \(n\) 好大不能枚举子集,于是考虑 \(dp\) 。

接下来的做法就十分神仙了【划重点】

我们发现 \(m\) 很小,也就是上面式子中 \(\frac{m}{\sum\limits_{i \in T} p_i}\) 的值只有 \(10^5\)种

那考虑合并同类项,把它拎出来,原式写成:

\[ans= \sum\limits_{j=1}^m \frac{m}{j} \cdot f_{n,j,k}
\]

于是我们就用 \(dp\) 搞这个系数。

\(f_{i,j,k}\) 中: \(i\) 表示考虑了前 \(i\) 个数; \(j\) 表示在前 \(i\) 个数中选出了集合 \(T\) ,\(T\) 中所有元素和为 \(j\) ;\(k\) 即求第 \(k\) 大。

转移:

1.对于 \(T\) 中没有第 \(i\) 个数的:贡献是 \(f_{i-1,j,k}\)

2.对于 \(T\) 中有第 \(i\) 个数的:贡献是 \(\sum\limits_{i \in T} (^{|T|-1}_{k-1}) \cdot (-1)^{|T|-k}\),这式中的 \(T\) 满足元素和为 \(j\)

而这个贡献肯定要由 \(f_{i-1,j-p[i],x}\) 转移而来,\(x\) 未知

于是我们把它改写成

\[\begin{equation*}
\begin{aligned}
&\sum\limits_{T} (^{|T|}_{k-1}) \cdot (-1)^{|T|-k+1} 其中T即为上式T减去i,满足元素和为j-p[i]\\
=&\sum [(^{|T|-1}_{k-1})+(^{|T|-1}_{k-2})] \cdot (-1)^{|T|-k+1} \\
=&\sum (^{|T|-1}_{k-1}) \cdot (-1)^{|T|-k} \cdot (-1) + \sum (^{|T|-1}_{(k-1)-1}) \cdot (-1)^{|T|-k+1} \\
=&-f_{i-1,j-p[i],k}+f_{i-1,j-p[i],k-1}
\end{aligned}
\end{equation*}
\]

综上所述,\(f_{i,j,k}=f_{i-1,j,k}+f_{i-1,j-p[i],k-1}-f_{i-1,j-p[i],k}\)

边界条件 \(f_{0,0,0}=1\)

注意要用滚动数组。

把所有系数求出来后枚举 \(\sum p[i]\)的值 ,带进去求就行了。


代码

#include<cstdio>
#include<iostream>
#include<algorithm> #define P 998244353 using namespace std; int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
} const int N = 1005; int n,K,m,p[N];
int f[2][N*10][12]; int Pow_mod(int x,int y){
int ret=1;
while(y){
if(y&1) ret=1ll*ret*x%P;
x=1ll*x*x%P;
y>>=1;
}
return ret;
} int main()
{
n=read(); K=read(); m=read();
K=n-K+1;
for(int i=1;i<=n;i++) p[i]=read(); f[0][0][0]=1;
for(int i=1;i<=n;i++){
int pre=((i-1)&1),id=(i&1);
for(int j=0;j<=m;j++)
for(int k=0;k<=i && k<=K;k++){
f[id][j][k]=f[pre][j][k];
if(j>=p[i] && k)
f[id][j][k]=((f[id][j][k]+f[pre][j-p[i]][k-1])%P+P-f[pre][j-p[i]][k])%P; //手残写成 p[j] ,调了好久
}
} int ans=0;
for(int i=1;i<=m;i++)
ans=((ans+1ll*m*Pow_mod(i,P-2)%P*f[n&1][i][K]%P)%P+P)%P;
printf("%d\n",ans); return 0;
}

[洛谷P4707] 重返现世的更多相关文章

  1. 洛谷 P4707 重返现世

    洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...

  2. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  3. 【题解】洛谷P4707重返现世

    在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...

  4. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  5. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  6. 洛谷 P4707 【重返现世】

    题目分析 题目就是求第K种原料的出现期望时间. 考虑广义min-max容斥. \(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\bin ...

  7. Luogu P4707 重返现世

    题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...

  8. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  9. P4707 重返现世 扩展 MinMax 容斥+DP

    题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...

随机推荐

  1. 2019-8-31-How-to-fix-nuget-Unrecognized-license-type-MIT-when-pack

    title author date CreateTime categories How to fix nuget Unrecognized license type MIT when pack lin ...

  2. Kafka Eagle安装详情及问题解答

    1.概述 最近有很多同学给笔者留言,说在安装Kafka Eagle的时候,会遇到一些问题,请教如何解决?今天笔者就在这里总结一下安装步骤,和一些安装的注意事项,以及解决方式. 2.内容 在安装Kafk ...

  3. 企业级Docker私有仓库Harbor

    一.Harbor简介 1.Harbor介绍 Harbor是一个用于存储和分发Docker镜像的企业级Registry服务器,通过添加一些企业必需的功能特性,例如安全.标识和管理等,扩展了开源Docke ...

  4. ApkTool工具

    ApkTool:   一款很好的反编译工具,支持Linux和Windows. 如何使用: 1:需要一个JAVA环境.由于之前已经装过JAVA 相关JDK,JRE,不赘述. 2:下载ApkTool工具: ...

  5. Excel特殊符号的录入与录入的秘诀

    软键盘就是输入法上的软键盘 右键单击软键盘 右键! 通过code函数得到符号的数字 按住alt键然后输入数字才可以得到符号 注意是在数字键盘  右边数字键盘区域 插入特殊符号 跳转方向的设置 如果超过 ...

  6. 【时区问题】SpringBoot+mybatis查询mysql的datetime类型数据时间差14小时

    [时区问题]MyBatis查询MySQL的datetime类型数据时间差14小时 故障解决方式 与数据库连接时,定义时区,避免mybatis框架从mysql获取时区.在连接上加上 serverTime ...

  7. 洛谷$P5330\ [SNOI2019]$数论 数论

    正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表 ...

  8. 1024 科学计数法 (20 分)C与Java

    科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [±][1-9].[0-9]+E[±][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指数部 ...

  9. 1040 有几个PAT (25 分)C语言

    字符串 APPAPT 中包含了两个单词 PAT,其中第一个 PAT 是第 2 位§,第 4 位(A),第 6 位(T):第二个 PAT 是第 3 位§,第 4 位(A),第 6 位(T). 现给定字符 ...

  10. 大数据框架开发基础之Zookeeper入门

    Zookeeper是Hadoop分布式调度服务,用来构建分布式应用系统.构建一个分布式应用是一个很复杂的事情,主要的原因是我们需要合理有效的处理分布式集群中的部分失败的问题.例如,集群中的节点在相互通 ...