前言

Spark SQL 在删除外部表时,本不能删除外部表的数据的。本篇文章主要介绍如何修改Spark SQL 源码实现在删除外部表的时候,可以带额外选项来删除外部表的数据。

本文的环境是我一直使用的 spark 2.4.3 版本。

1. 修改ANTLR4 语法文件

修改 SqlBase.g4文件中drop Table 相关语句,添加(WITH DATA)?, 修改完之后如下:

DROP TABLE (IF EXISTS)? tableIdentifier (WITH DATA)? PURGE?                   #dropTable

因为,删除external表也不是必须的,所以添加WITH DATA 为可选项,跟 IF EXISTS类似。

2. 修改相关方法

2.1 修改SparkSqlParser.scala文件

  /**
   * Create a [[DropTableCommand]] command.
   */
  override def visitDropTable(ctx: DropTableContext): LogicalPlan = withOrigin(ctx) {
    DropTableCommand(
      visitTableIdentifier(ctx.tableIdentifier),
      ctx.EXISTS != null,
      ctx.VIEW != null,
      ctx.PURGE != null,
      ctx.WITH() != null && ctx.DATA() != null)
  }

2.2 修改DropTableCommand.scala等相关文件

首先修改构造函数,在最后一个参数后面添加withData方法,默认为false:

case class DropTableCommand(
    tableName: TableIdentifier,
    ifExists: Boolean,
    isView: Boolean,
    purge: Boolean,
    withData:Boolean = false // TODO 外部表是否需要删除表数据
    ) extends RunnableCommand

DropTableCommand本质上其实是用了command设计模式,实际在运行时,会调用其run方法,修改 run 方法,如下:

 override def run(sparkSession: SparkSession): Seq[Row] = {
     val catalog = sparkSession.sessionState.catalog
     val isTempView = catalog.isTemporaryTable(tableName)

     if (!isTempView && catalog.tableExists(tableName)) {
       // If the command DROP VIEW is to drop a table or DROP TABLE is to drop a view
       // issue an exception.
       catalog.getTableMetadata(tableName).tableType match {
         case CatalogTableType.VIEW if !isView =>
           throw new AnalysisException(
             "Cannot drop a view with DROP TABLE. Please use DROP VIEW instead")
         case o if o != CatalogTableType.VIEW && isView =>
           throw new AnalysisException(
             s"Cannot drop a table with DROP VIEW. Please use DROP TABLE instead")
         case _ =>
       }
     }

     if (isTempView || catalog.tableExists(tableName)) {
       try {
         sparkSession.sharedState.cacheManager.uncacheQuery(
           sparkSession.table(tableName), cascade = !isTempView)
       } catch {
         case NonFatal(e) => log.warn(e.toString, e)
       }
       catalog.refreshTable(tableName)
       log.warn(s"withData:${withData}")
       catalog.dropTable(tableName, ifExists, purge, withData)
     } else if (ifExists) {
       // no-op
     } else {
       throw new AnalysisException(s"Table or view not found: ${tableName.identifier}")
     }
     Seq.empty[Row]
   }

在第 28 行,为 catalog对象的dropTable 添加 withData 参数。其中catalog是 org.apache.spark.sql.catalyst.catalog.SessionCatalog 的实例。其子类并没有重写其 dropTable 方法,故只需要修改其dropTable 方法即可。具体修改代码如下:

 /**
    * Drop a table.
    *
    * If a database is specified in `name`, this will drop the table from that database.
    * If no database is specified, this will first attempt to drop a temporary view with
    * the same name, then, if that does not exist, drop the table from the current database.
    */
   def dropTable(
       name: TableIdentifier,
       ignoreIfNotExists: Boolean,
       purge: Boolean,
       withData:Boolean = false // 外部表是否需要在hdfs上删除其对应的数据
                ): Unit = synchronized {
     val db = formatDatabaseName(name.database.getOrElse(currentDb))
     val table = formatTableName(name.table)
     if (db == globalTempViewManager.database) {
       val viewExists = globalTempViewManager.remove(table)
       if (!viewExists && !ignoreIfNotExists) {
         throw new NoSuchTableException(globalTempViewManager.database, table)
       }
     } else {
       if (name.database.isDefined || !tempViews.contains(table)) {
         requireDbExists(db)
         // When ignoreIfNotExists is false, no exception is issued when the table does not exist.
         // Instead, log it as an error message.
         if (tableExists(TableIdentifier(table, Option(db)))) {
           logError(s"withData :${withData}")
           externalCatalog.dropTable(db, table, ignoreIfNotExists = true,purge = purge, withData)
         } else if (!ignoreIfNotExists) {
           throw new NoSuchTableException(db = db, table = table)
         }
       } else {
         tempViews.remove(table)
       }
     }
   }

为防止在test中有很多的测试类在调用该方法,在编译时报错,新添加的withData给默认值,为false,保证该方法默认行为跟之前未修改前一致。

withData 参数继续传递给 externalCatalog.dropTable 方法,其中,externalCatalog 是 org.apache.spark.sql.catalyst.catalog.ExternalCatalog 类型变量,ExternalCatalog 是一个trait,ExternalCatalog 实现类关系如下:

首先修改ExternalCatalog 的dropTable 方法,如下:

def dropTable(
      db: String,
      table: String,
      ignoreIfNotExists: Boolean,
      purge: Boolean,
      withData:Boolean=false): Unit

参数加载最后,给默认值false。

org.apache.spark.sql.catalyst.catalog.ExternalCatalogWithListener 是一个包装类,其内部在原来ExternalCatalog 的行为之外添加了监听的行为。先修改这个包装类的dropTable,如下:

override def dropTable(
      db: String,
      table: String,
      ignoreIfNotExists: Boolean,
      purge: Boolean,
      withData:Boolean): Unit = {
    postToAll(DropTablePreEvent(db, table))
    delegate.dropTable(db, table, ignoreIfNotExists, purge, withData)
    postToAll(DropTableEvent(db, table))
  }

其中,delegate 就是真正执行 dropTable操作的ExternalCatalog对象。

catlog有两个来源,分别是 in-memory和 hive, in-memory的实现类是org.apache.spark.sql.catalyst.catalog.InMemoryCatalog,只需要添加 方法参数列表即可,在方法内部不需要做任何操作。

hive的实现类是 org.apache.spark.sql.hive.HiveExternalCatalog, 其dropTable 方法如下:

override def dropTable(
      db: String,
      table: String,
      ignoreIfNotExists: Boolean,
      purge: Boolean,
      withData:Boolean): Unit = withClient {
    requireDbExists(db)
    val tableLocation: URI = client.getTable(db,table).location
    client.dropTable(db, table, ignoreIfNotExists, purge)
    val path: Path = new Path(tableLocation)
    val fileSystem: FileSystem = FileSystem.get(hadoopConf)
    val fileExists: Boolean = fileSystem.exists(path)
    logWarning(s"withData:${withData}, ${path} exists : ${fileExists}")
    if (withData && fileExists) {
      fileSystem.delete(path, true)
    }
  }

3. 打包编译

在生产环境编译,编译命令如下:

./dev/-cdh5./bin/mvn  -Pyarn -Phadoop--cdh5.14.0 -X

注:由于编译的是 cdh版本,一些jar包不在中央仓库,在pom.xml文件中,添加 cloudera maven 源:

<repository>
   <id>cloudera</id>
   <url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
</repository>

为了加快 maven编译的速度, 在 make-distribution.sh 文件中,修改了编译的并行度,在171行,把1C改为4C,具体修改如下:

BUILD_COMMAND=("$MVN" -T 4C clean package -DskipTests $@)

执行编译结束之后,在项目的根目录下,会有 spark-2.4.3-bin-2.6.0-cdh5.14.0.tgz 这个压缩包,这就是binary 文件,可以解压到指定目录进行相应配置了。

4. 配置spark

把原来集群中spark 的配置以及相关jar包拷贝到新的spark相应目录。

5. 测试

5.1 创建外部表

spark sql

spark-sql> use test;

spark-sql> create external table ext1 location '/user/hive/warehouse/test.db/ext1' as select * from person;

spark-sql> select * from ext1;

1 2 3
2 zhangsan 4
3 lisi 5
4 wangwu 6
5 rose 7
6 nose 8
7 info 9
8 test 10

查看 hdfs 上对应目录是否有数据

[root@xxx ~]# hdfs dfs -ls -R /user/hive/warehouse/test.db/ext1
-rwxr-xr-x  root supergroup  -- : /user/hive/warehouse/test.db/ext1/part--aae237ac-4a0b-425c-a0f1-5d54d1e88957-c000

5.2 删除表

spark-sql> drop table if exists ext1 with data;

5.3 验证表元数据已删除成功

spark-sql> show tables;
test    person    false

没有ext表,说明已删除成功。

5.4 验证hdfs上数据已删除成功

[root@node01 ~]# hdfs dfs -ls -R /user/hive/warehouse/test.db/ext1
ls: `/user/hive/warehouse/test.db/ext1': No such file or directory

该目录已不存在,说明hdfs上数据已删除成功。

总结

本文具体介绍了如何修改spark sql 的源码,在删除external表时可选择地删除hdfs上的底层数据。

Spark SQL 之自定义删除外部表的更多相关文章

  1. 【转载】Spark SQL之External DataSource外部数据源

    http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...

  2. Spark SQL之External DataSource外部数据源(二)源代码分析

    上周Spark1.2刚公布,周末在家没事,把这个特性给了解一下,顺便分析下源代码,看一看这个特性是怎样设计及实现的. /** Spark SQL源代码分析系列文章*/ (Ps: External Da ...

  3. [SQL]修改和删除基本表

    修改基本表 SQL语言用alter table语句修改基本表,其一般格式如下: alter table <表名> add <列名> <数据类型> [<列级完整 ...

  4. sql*loader以及oracle外部表加载Date类型列

    Oracle sqlldr LOAD DATAINFILE *INTO TABLE testFIELDS TERMINATED BY X'9'TRAILING NULLCOLS(    c2 &quo ...

  5. persistent.xml hibernate 利用sql script 自定义生成 table 表

    <?xml version="1.0" encoding="UTF-8"?> <persistence xmlns="http:// ...

  6. Sql Server批量删除指定表

    --批量删除以test的表开头的表 declare @name varchar(50) while(exists(select * from sysobjects where name like te ...

  7. sql server 批量删除数据表

    SET ANSI_NULLS ONGOSET QUOTED_IDENTIFIER ONGO-- =============================================-- Auth ...

  8. SQL 更新修改删除一个表,库存自动增减的写法

    create trigger tri_asbon asb for insert as begin declare @rk int declare @ck int declare @sid varcha ...

  9. postgres 删除外部表

    drop external table if exists tableName;

随机推荐

  1. LeetCode 第17题--电话号码的组合(DFS)

    1. 题目 2.题目分析与思路 3.代码 1. 题目 输入:"23" 输出:["ad", "ae", "af", &qu ...

  2. ORM基础2 字段及其参数和meta

    一.ORM简介 1.概念:ORM(Object Relational Mappingt ),对象关系映射 2.实质:类与数据库之间的映射 3.优点: 开发人员不用写数据库 4.缺点: 开发人员,数据库 ...

  3. IDEA新建maven项目没有webapp目录解决方法

    转载地址:https://www.cnblogs.com/oldzhang1222/p/10429827.html 先创建的页面修改路径 修改路径如下 添加并完善路径\src\main\webapp ...

  4. 美食家App开发日记1

    前期一直在看第一行代码Android,这本书感觉讲基础讲得特别细致. 百看不如一试. 因为刚刚接触Android,没办法做到想写什么功能就直接一下写好,只能从最开始基础的控件使用开始练习. 所以一直在 ...

  5. ip 地址库 这个 准么 呢

  6. 从DirectX SDK升级到Windows SDK

    原来的DirectX SDK到June 2010,微软就不更新了.之后新的版本被集成到了Windows SDK中. 在微软的博客里找到一篇升级指南:http://blogs.msdn.com/b/ch ...

  7. Navicat premium 12 for mac 无限试用

    Mac 终端输入 sudo rm -Rf ~/Library/Application\ Support/PremiumSoft\ CyberTech 重启电脑 成功

  8. Java小白入门:聊聊Java这门编程语言

    一.什么叫做编程 首先我们应该了解一下什么叫做编程. 百度百科词条的解释: 编程是编定程序的简称,是让计算机代我们解决某个问题,是对某个计算体系规定一定的运算方式,使计算体系按照该计算方式运行,并最终 ...

  9. Mbp通过筛选器和中间件实现异常,日志,事务及接口返回数据格式化aop处理.

    Mbp应用服务层的AOP实现 实现方法:asp.net core mvc 筛选器 + 中间件 日志,事务,和接口返回结果统一格式化采用操作筛选器,而异常处理采用中间件来处理. 最开始,我是打算用aut ...

  10. Git基础常用功能

    一.安装 具体查看 安装Git 二.使用 基础知识 工作区(Workspace):就是你在电脑里能看到的项目目录. 暂存区(Index / Stage):临时存放更改的地方,使用命令"git ...