Java练习 SDUT-2728_最佳拟合直线
最佳拟合直线
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。
为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1),(X2,Y2)...,(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)。

对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN。
我们用D12 + D22 + ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。
本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。
你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):
y = a*x + b (4.1)
a和b可以使用以下公式计算:

式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)2与∑(x2)也是不相同的(“和的平方”与“平方的和”是不相同的)。
Input
n组整数表示xi,yi ,期中|x|<=106,|y|<=106, n < 15
Output
最佳拟合曲线参数a和b,a和b各占一行,a 和b精确到小数点后3位。
Sample Input
4
1 6
2 5
3 7
4 10
Sample Output
1.400
3.500
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
double x,xx,yy,y,xy,q,w;
int i,n;
double []a = new double[20];
double []b = new double[20];
n = cin.nextInt();
for(i=0;i<n;i++)
{
a[i] = cin.nextDouble();
b[i] = cin.nextDouble();
}
x = get_sum(a,n);
y = get_sum(b,n);
xy = get_sum(a,b,n);
xx = get_sum(a,a,n);
yy = get_sum(b,b,n);
q = (n * xy - x * y) / (n * xx - x*x);
w = (y * xx - x * xy) / (n * xx - x*x);
System.out.printf("%.3f\n%.3f\n",q,w);
cin.close();
}
static double get_sum(double []x,double []y,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i] * y[i];
return sum;
}
static double get_sum(double []x,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i];
return sum;
}
}
Java练习 SDUT-2728_最佳拟合直线的更多相关文章
- Java练习 SDUT - 2669_2-2 Time类的定义
2-2 Time类的定义 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 通过本题目的练习可以掌握类与对象的定义: 设计 ...
- [java作业]Fan、求直线交点、Triangle2D、选课
public class Fan { public static void main(String[] args) { Fan fan1 = new Fan(), fan2 = new Fan(); ...
- Java面向对象4(P~U)
P 3-1 Point类的构造函数 (SDUT 2670) import java.util.Arrays; import java.util.Scanner; public class Mai ...
- 机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向 ...
- 机器学习实战笔记(Python实现)-08-线性回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- 【scikit-learn】scikit-learn的线性回归模型
内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预 ...
- 建模分析之机器学习算法(附python&R代码)
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...
随机推荐
- 启动easy-mock
1.启动mongodb 启动mongodb服务器: /usr/local/mongodb/bin/mongod -config /usr/local/mongodb/data/mongodb.co ...
- 设置mysql二进制日志过期时间
((none)) > show variables like 'expire_logs_days'; +------------------+-------+ | Variable_name | ...
- 基于MaxCompute打造轻盈的人人车移动端数据平台
摘要: 2019年1月18日,由阿里巴巴MaxCompute开发者社区和阿里云栖社区联合主办的“阿里云栖开发者沙龙大数据技术专场”走近北京联合大学,本次技术沙龙上,人人车大数据平台负责人吴水永从人人车 ...
- centos7.6 安装jdk1.8
1. 下载 jdk-8u211-linux-x64.tar.gz文件. 2. 创建/opt/soft目录,# cd /opt, # mkdir soft, #tar -zxvf jdk-8u211- ...
- LUOGU P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...
- 2019.8.1 NOIP模拟测试11 反思总结
延迟了一天来补一个反思总结 急匆匆赶回来考试,我们这边大家的状态都稍微有一点差,不过最后的成绩总体来看好像还不错XD 其实这次拿分的大都是暴力[?],除了某些专注于某道题的人以及远程爆踩我们的某学车神 ...
- leetcode 198-234 easy
198. House Robber 相邻不能打劫,取利益最大化. 思想:当前值和前一个和的总数 与 前一个和 做大小比较,取最大值,重复该步骤. class Solution { publ ...
- jQuery的deferred对象使用详解【转载】
一.什么是deferred对象? 开发网站的过程中,我们经常遇到某些耗时很长的javascript操作.其中,既有异步的操作(比如ajax读取服务器数据),也有同步的操作(比如遍历一个大型数组),它们 ...
- web前端学习(三)css学习笔记部分(3)-- css常用操作
5. CSS常用操作 5.1 对齐 使用margin属性进行水平对齐 <!DOCTYPE html> <html lang="en"> <head ...
- 从0开始学习 GitHub 系列之「07.GitHub 常见的几种操作」
之前写了一个 GitHub 系列,反响很不错,突然发现竟然还落下点东西没写,前段时间 GitHub 也改版了,借此机会补充下. 我们都说开源社区最大的魅力是人人多可以参与进去,发挥众人的力量,让一个项 ...