Java练习 SDUT-2728_最佳拟合直线
最佳拟合直线
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。
为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1),(X2,Y2)...,(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)。

对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN。
我们用D12 + D22 + ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。
本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。
你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):
y = a*x + b (4.1)
a和b可以使用以下公式计算:

式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)2与∑(x2)也是不相同的(“和的平方”与“平方的和”是不相同的)。
Input
n组整数表示xi,yi ,期中|x|<=106,|y|<=106, n < 15
Output
最佳拟合曲线参数a和b,a和b各占一行,a 和b精确到小数点后3位。
Sample Input
4
1 6
2 5
3 7
4 10
Sample Output
1.400
3.500
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
double x,xx,yy,y,xy,q,w;
int i,n;
double []a = new double[20];
double []b = new double[20];
n = cin.nextInt();
for(i=0;i<n;i++)
{
a[i] = cin.nextDouble();
b[i] = cin.nextDouble();
}
x = get_sum(a,n);
y = get_sum(b,n);
xy = get_sum(a,b,n);
xx = get_sum(a,a,n);
yy = get_sum(b,b,n);
q = (n * xy - x * y) / (n * xx - x*x);
w = (y * xx - x * xy) / (n * xx - x*x);
System.out.printf("%.3f\n%.3f\n",q,w);
cin.close();
}
static double get_sum(double []x,double []y,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i] * y[i];
return sum;
}
static double get_sum(double []x,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i];
return sum;
}
}
Java练习 SDUT-2728_最佳拟合直线的更多相关文章
- Java练习 SDUT - 2669_2-2 Time类的定义
2-2 Time类的定义 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 通过本题目的练习可以掌握类与对象的定义: 设计 ...
- [java作业]Fan、求直线交点、Triangle2D、选课
public class Fan { public static void main(String[] args) { Fan fan1 = new Fan(), fan2 = new Fan(); ...
- Java面向对象4(P~U)
P 3-1 Point类的构造函数 (SDUT 2670) import java.util.Arrays; import java.util.Scanner; public class Mai ...
- 机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向 ...
- 机器学习实战笔记(Python实现)-08-线性回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- 【scikit-learn】scikit-learn的线性回归模型
内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预 ...
- 建模分析之机器学习算法(附python&R代码)
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...
随机推荐
- StoryBoard拆分(Storyboard References)
https://www.jianshu.com/p/78dc76204c8e iOS UI篇10- Storyboard(Storyboard Reference) https://www.aliyu ...
- springmvc:请求参数绑定集合类型
一.请求参数绑定实体类 domain: private String username; private String password; private Double money; private ...
- git pull拉取远程指定分支
1.若git clone之后想拉取某个指定分支:先git pull ,然后git checkout 指定分支名称 2.若git clone之后想拉取某个指定分支:先git fetch origin 分 ...
- Kotlin 委托(2)变量委托是什么、自定义变量委托
1.委托是什么? 1.1 官网示例 在每个变量委托的实现的背后,Kotlin 编译器都会生成辅助对象并委托给它. 假设委托如下, class C { var prop: Type by MyDeleg ...
- 【python之路35】FTP文件断电续传作业
开发一个支持多用户在线FTP程序: 要求: 1.用户MD5加密认证 2.允许同时多用户登陆(socketserver) 3.执行命令 4.上传文件 文件传输过程中显示进度条 支持文件的断点续传
- TZ_13_微服务场景Eureka
1.搭建Eureka的注册中心 1.1Eureka几个时间间隔配置详解 1 >客户端信息上报到eureka服务的时间周期,配置的值越小,上报越频繁,eureka服务器应用状态管理一致性越高 #客 ...
- Clash Credenz 2014 Wild Card Round题解
A题 简单模拟. /************************************************************************* > File Name: ...
- random模块&hashlib模块
random模块1.random.randrange(1, 10):返回1-10之间的一个随机数,不包括102.random.randint(1,10):返回1-10之间的一个随机数,包括103.ra ...
- makefile 语法笔记 3
这里说明了 在一些情况下 这也是可以使用通配符的 objects =*.o 这种情况是不会展开的 makefile 中的变量是C++/C 中的宏 如果希望展开,可以使用 $(wildcard *.o) ...
- 洛谷P1969 [NOIP2013提高组Day2T1] 积木大赛
P1969 积木大赛 题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi. 在搭建开始之前, ...