1.tf.multiply()函数:矩阵对应元素相乘

官网定义:

multiply(x,y,name=None)

参数:

x: 一个类型为:half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128的张量。

y: 一个类型跟张量x相同的张量。

注意:

  (1)该函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法

  (2)两个相乘的数必须是相同的类型,否则会报错。

举例说明:

 import tensorflow as tf

 # 1.数和矩阵相乘
x = tf.constant([[1,2,3],[2,3,4],[3,4,5]])
y1 = tf.constant(2)
xy1 = tf.multiply(x,y1) # 2.两个矩阵对应元素相乘
x = tf.constant([[1,2,3],[2,3,4],[3,4,5]])
y2 = tf.constant([[1,1,1],[2,2,2],[3,3,3]])
xy2 = tf.multiply(x,y2) # 3.元素类型不一样,报错
# x = tf.constant([[1,2,3],[2,3,4],[3,4,5]])
# y3 = tf.constant([[1.0,1.0,1.0],[2.0,2.0,2.0],[3.0,3.0,3.0]])
# xy3 = tf.multiply(x,y3) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) print('xy1 =\n',sess.run(xy1))
print('xy2 =\n',sess.run(xy2))
# print('xy3 =\n',sess.run(xy3))

运行结果:

xy1 =
[[ 2 4 6]
[ 4 6 8]
[ 6 8 10]]
xy2 =
[[ 1 2 3]
[ 4 6 8]
[ 9 12 15]]

2.tf.matmul()函数:矩阵乘法

官网定义:

matmul(a,
b,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
name=None)

参数:

a: 一个类型为 float16, float32, float64, int32, complex64, complex128 且张量秩 > 1 的张量。 
b: 一个类型跟张量a相同的张量。 
transpose_a: 如果为真, a则在进行乘法计算前进行转置。 
transpose_b: 如果为真, b则在进行乘法计算前进行转置。 
adjoint_a: 如果为真, a则在进行乘法计算前进行共轭和转置。 
adjoint_b: 如果为真, b则在进行乘法计算前进行共轭和转置。 
a_is_sparse: 如果为真, a会被处理为稀疏矩阵。 
b_is_sparse: 如果为真, b会被处理为稀疏矩阵。

返回值: 一个跟张量a和张量b类型一样的张量且最内部矩阵是a和b中的相应矩阵的乘积。

举例说明:

 import tensorflow as tf

 x = tf.constant([[1,2,3],
[2,3,4],
[3,4,5]])
y = tf.constant([[1,2,3],
[1,2,3],
[1,2,3]])
xy = tf.matmul(x,y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('xy1 =\n',sess.run(xy))

运行结果:

xy =
[[ 6 12 18]
[ 9 18 27]
[12 24 36]]

3.multiply()和matmul()对比

举例说明:

 import tensorflow as tf

 x = tf.constant([[1,2,3],
[2,3,4],
[3,4,5]])
y1 = tf.constant([[1,2,3],
[1,2,3],
[1,2,3]])
y2 = tf.constant([[1,2,3],
[1,2,3],
[1,2,3]])
z1 = tf.multiply(x,y1) # 对应元素相乘
z2 = tf.matmul(x,y2) # 矩阵相乘 with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('z1 =\n',sess.run(z1))
print('z2 =\n',sess.run(z2))

运行结果:

z1 =
[[ 1 4 9]
[ 2 6 12]
[ 3 8 15]]
z2 =
[[ 6 12 18]
[ 9 18 27]
[12 24 36]]

Tensorflow中multiply()函数与matmul()函数的用法区别的更多相关文章

  1. SQL语句中order_by_、group_by_、having的用法区别

    order by 从英文里理解就是行的排序方式,默认的为升序. order by 后面必须列出排序的字段名,可以是多个字段名. group by 从英文里理解就是分组.必须有“聚合函数”来配合才能使用 ...

  2. Tensorflow中保存模型时生成的各种文件区别和作用

    假如我们得到了如下的checkpoints, 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是plugins这个文件夹,这个是 ...

  3. php中var_dump、var_export和print_r的用法区别

    void var_dump ( mixed $expression [, mixed $... ] )此函数显示关于一个或多个表达式的结构信息,包括表达式的类型与值.数组将递归展开值,通过缩进显示其结 ...

  4. models中字段参数blank和null的用法区别

    blank当blank=True时,说明此处的数据可以不填,默认情况下为False,也就意味着默认情况下,所输入的数据不得空,blank是和页面表单有关,在页面需要输入参数的时候,如果在models里 ...

  5. Tensorflow中的run()函数

    1 run()函数存在的意义 run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备.前向传播过程设计.损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Se ...

  6. TensorFlow中的通信机制——Rendezvous(一)本地传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在TensorFlow源码中我们经常能看到一个奇怪的词——Rendezvous ...

  7. 第二十二节,TensorFlow中RNN实现一些其它知识补充

    一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于 ...

  8. (原)tensorflow中函数执行完毕,显存不自动释放

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/question ...

  9. PyTorch 中 torch.matmul() 函数的文档详解

    官方文档 torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定. 关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的 ...

随机推荐

  1. 折腾vue--环境搭建(一)

    1.安装nodejs nodejs下载地址:https://nodejs.org/en/ 2.检测nodejs //检测nodejs版本 node -v //检测npm npm –v 3.安装vue ...

  2. Java 【Math】

    一.Math类的使用方法 public class demo{ public static void main(String[] args){ double pi = Math.PI; //Math函 ...

  3. .NET Core DI简单介绍

    依赖注入的基础 我们都知道DI,,他是一种开发模式.他是将服务可被应用程序任何位置的代码使用,当某个代码组件(如一个类)需要引用某些外部代码(一个服务)时.都有两种选择 1:直接在调用代码种创建服务组 ...

  4. python数据类型(第一弹)

    作为一门计算机编程语言,python与其它语言一样,设有若干种数据类型,准确掌握各种数据类型的常用方法是精通python的必要条件,也是熟练使用各数据类型.最大限度发挥它们功能的基本条件. pytho ...

  5. opencv —— src.at<Vec3b>(i, j)[0]、src.at<uchar>(i, j)、src.ptr<uchar>(i) 访问图像的单个像素

    动态地址访问像素:src.at<Vec3b>(i, j)[0].src.at<uchar>(i, j)  int b = src.at<Vec3b>(i, j)[0 ...

  6. 【笔记】机器学习 - 李宏毅 - 6 - Logistic Regression

    Logistic Regression 逻辑回归 逻辑回归与线性回归有很多相似的地方.后面会做对比,先将逻辑回归函数可视化一下. 与其所对应的损失函数如下,并将求max转换为min,并转换为求指数形式 ...

  7. 在csv表格中修改/追加某行数据

    思路: 文本文件不能随意穿插信息,但是通过使用Seek()方法,可以在读取文本文件中移动光标从而修改所要修改的行. 思路步骤: 1.读取文件,打开csv文件,获取文件流,seek移动光标到开始, fo ...

  8. IntelliJ IDEA搭建一个简单的springboot项目

    一.IDEA 安装包 百度网盘链接:https://pan.baidu.com/s/1MYgZaBVWXgy64KxnoeJSyg 提取码:7dh2 IDEA注册码获取:http://idea.lan ...

  9. 双向链表的简单Java实现-sunziren

    写在前面,csdn的那篇同名博客就是我写的,我把它现在在这边重新发布,因为我实在不想用csdn了,那边的广告太多了,还有就是那个恶心人的“阅读更多”按钮,惹不起我躲得起. 在上次分享完单向链表的简单编 ...

  10. linux基础之IO模型

    一.IO模型 一次read操作: (1)等待数据准备好:从磁盘到内核内存 (2)从内核内存复制到进程内存 示意图如下: I/O类型: 同步和异步:synchronous,asynchronous 关注 ...