链接

PDF

bzoj

先求出正置边和反置边时b+1到前b个点的最短路dis[0/1][x](x∈[1,b]),

令D[x]=dis[0][x]+dis[1][x]

然后分组后每个x对代价的贡献为D[x]*(所在组中元素个数-1)

考虑DP决策分组过程,发现没有一个很好的序,

不过为了使得代价小,应该把D小的放在个数大的组里,D大的放在个数少的组里

由此可以想出,应该是大小相近的元素放在了同一组中,这意味着,先排序,在划分成s段,的所有情况包含了原问题的最优解

于是把D[1~b]排序后,有方程

$f[i][j]=MIN_{k=0}^{j-1}[f[i-1][k]+(j-k-1)*(sum[j]-sum[k])]$

$O(n^3)$

其中:f[i][j]表示把前j个分成i组的最小值,sum为D的前缀和

非法状态均置为INF

由于可以粗略的知道这个东西在j确定,i为自变量的函数图像上有凸性

(可以玄学地认为,最开始的时候,多划分一刀可以造成很大的改变,随着划分次数越来越多,多划分一刀的改变越来越微小)

于是,可以使用带权二分来优化这一DP

即,消去对划分次数的限制,通过二分来找到一个合适的划分附加代价,使得即使不限制划分次数,最后的最优解也恰好满足我们对划分数的限制

这样有了一个新的方程

$f'[j]=MIN_{k=0}^{j-1}[f'[k]+(j-k-1)*(sum[j]-sum[k])]+C$

$O(n^2log)$

考虑优化转移过程

拆开方程得到

$f'[j]=MIN_{k=0}^{j-1}[f'[k]+(k+1)sum[k]-ksum[j]-jsum[k]]+(j-1)sum[j]+C$

在方程中

当固定j不动时

随k增加,f'[k]+(k+1)sum[k]项增加,-ksum[j]-jsum[k]项减小

而随j的增加,含j的项(即-ksum[j]-jsum[k])对答案的影响加剧,于是,随j的增加,j的最优决策中的k会单调变大(随j的增加,我们决策时更为看重含j项,为了使含j项减小,我们试图使用更大的k)

这意味着这个方程有决策单调性

本题通过带权二分和决策单调性优化可以做到$O(nlog^2)$

(感觉最近状态很差,午休一直睡不着来着,几个月了吧,先是用N^2log给方哥号上贡献了半屏T,又以为可以nlog做,然后贡献了半屏Wa,最后才发现决策单调性)

代码:

 #include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define P pair <int ,int >
using namespace std;
priority_queue <P ,vector <P > ,greater <P > > PQ ;
int n,b,s,r;
struct INP{
int u,v,val;
}inp[];
struct ss{
int to,next,val;
}e[];
int first[],num;
LL d[],f[],sum[];
int lin[],dis[],que[],grt_st[];
void build(int ,int ,int );
void dij(int );
bool check(LL );
LL ask(int ,int );
int main()
{
int i,j,k,l;
LL L,R,mid;
scanf("%d%d%d%d",&n,&b,&s,&r);
for(i=;i<=r;i++){
scanf("%d%d%d",&inp[i].u,&inp[i].v,&inp[i].val);
build(inp[i].u,inp[i].v,inp[i].val);
}
dij(b+);
for(i=;i<=b;i++) d[i]=dis[i];
memset(first,,sizeof(first)),num=;
for(i=;i<=r;i++)
build(inp[i].v,inp[i].u,inp[i].val);
dij(b+);
for(i=;i<=b;i++) d[i]+=dis[i];
sort(d+,d+b+);
for(i=;i<=b;i++) sum[i]=sum[i-]+d[i];
L=,R=b*sum[b],mid=(L+R)>>;
while(R-L>=){
if(check(mid)) L=mid;
else R=mid-;
mid=(L+R)>>;
}
for(mid=R;mid>=L;mid--)
if(check(mid)){
printf("%lld\n",f[b]-s*mid);
return ;
}
return ;
}
void build(int f,int t,int val){
e[++num].next=first[f];
e[num].to=t,e[num].val=val;
first[f]=num;
}
void dij(int S){
int i,U;
memset(dis,0x3f,sizeof(dis));
dis[S]=;
P u,v;
u.first=,u.second=S;
PQ.push(u);
while(!PQ.empty()){
u=PQ.top();
PQ.pop();
U=u.second;
for(i=first[U];i;i=e[i].next)
if(dis[e[i].to]>dis[U]+e[i].val){
dis[e[i].to]=dis[U]+e[i].val;
v.first=dis[e[i].to],v.second=e[i].to;
PQ.push(v);
}
}
}
bool check(LL lim){
int tmp=,i,h=,t=;
int l,r,mid;
f[]=lin[]=,grt_st[]=;
que[t]=;
for(i=;i<=b;i++){
l=h+,r=t,mid=(l+r)>>;
while(r-l>){
if(i>=grt_st[que[mid]]) l=mid;
else r=mid-;
mid=(l+r)>>;
}
for(mid=r;mid>=l;mid--)
if(i>=grt_st[que[mid]]){
f[i]=ask(i,que[mid])+lim,lin[i]=lin[que[mid]]+;
break;
}
if(i==b) break;
grt_st[i]=b+;
while(h<t&&grt_st[que[t]]>i&&ask(grt_st[que[t]],i)<=ask(grt_st[que[t]],que[t])) grt_st[i]=grt_st[que[t]],t--;
if(h<t){
l=max(grt_st[que[t]],i+),r=grt_st[i]-,mid=(l+r)>>;
while(r-l>){
if(ask(mid,i)<=ask(mid,que[t])) r=mid;
else l=mid+;
mid=(l+r)>>;
}
for(mid=l;mid<=r;mid++)
if(ask(mid,i)<=ask(mid,que[t])){
grt_st[i]=mid;
break;
}
}
if(grt_st[i]!=b+)
que[++t]=i;
}
return lin[b]>=s;
}
LL ask(int x,int typ){
return f[typ]+(x-typ-)*(sum[x]-sum[typ]);
}

[World Final 2016] Branch Assignment的更多相关文章

  1. 4609: [Wf2016]Branch Assignment 最短路 DP (阅读理解题)

    Bzoj的翻译出锅了所以来官方题面:这个题应该是单向边而BZOJ说的是双向边,什么你WA了?谁叫你懒得看英文...... 显然我们能正向反向两遍SPFA处理出每个点到总部的距离和总部到每个点的距离.如 ...

  2. Gym-101242B:Branch Assignment(最短路,四边形不等式优化DP)

    题意:要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门分成s个组.分组完成后,每一组的任 意两个点之间都要传递信息.假设在(i,j)两个点间传送信息,要先把信息加密, ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. BZOJ 4619 Swap Space 解题报告

    今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/p ...

  5. Kafka Consumer2

    本文记录了和conumser相关的几个类. 首先是RequestFuture这个类,consumer和服务端通信使用它作为返回值. 其次是HeartBeat机制,consumer和coordinato ...

  6. JGit----将 Git 嵌入你的应用

    如果你想在一个 Java 程序中使用 Git ,有一个功能齐全的 Git 库,那就是 JGit . JGit 是一个用 Java 写成的功能相对健全的 Git 的实现,它在 Java 社区中被广泛使用 ...

  7. 2016/09/21 Java关键字final

    1.final类 final类不能被继承,没有子类,final类中的方法默认是final的. final类不能被继承,因此final类的成员方法没有机会被覆盖,默认都是final的. 2.final方 ...

  8. 2016 China Collegiate Programming Contest Final

    2016 China Collegiate Programming Contest Final Table of Contents 2016 China Collegiate Programming ...

  9. Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution

    Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution 题目链接:https://atcoder.jp/contests/cf16- ...

随机推荐

  1. 冰与火之歌居然是在 DOS 系统上写出来的

    简评:<权力的游戏>第八季(最终季)终于开播了!这部美剧的原著小说有一个很有趣的冷知识 -- 它是在运行 DOS 系统的计算机上写出来的.其实不少老粉都已经知道这个典故,不过听到老爷子的亲 ...

  2. DevOps - CI - Jenkins

    Jenkins 开源软件项目,其前身为Hudson,旨在提供一个基于Java开发的开放易用的持续集成工具,用于监控持续重复的工作. 主要用于自动而持续地构建/测试软件项目:监控外部调用执行的工作. 官 ...

  3. sql 游标 跳出循环 和进入下一个循环

    1  使用break 结束整个循环. 2  使用continue 结束当前循环,进入下已循环. 注意:使用continue造成死循环,是因为continue后又执行与上次相同的fetch了. 解决办法 ...

  4. Math、Random、System、BigInteger、Date、DateFormat、Calendar类,正则表达式_DAY14

    1:Math&大数据类四则运算 X abs(X x) double random()         产生随机数 double ceil(double a)   向上取整 double flo ...

  5. Git使用(3)

    1.查看本地和远程分支 git branch -a 删除本地分支 git branch -D branchName(D要大写) 删除远程分支 git push origin :branchName 2 ...

  6. COM+时代的自动事务

    最近看公司的遗留项目代码,调试的时候发现经常报分布式事务错误,可是整个代码里没有看见开启过事务,于是开始研究,发现了这个.Net Framework1.1时代的产物. namespace Busine ...

  7. Python基础之白话说函数

    转自白月黑羽Python3教程之函数:http://www.python3.vip/doc/tutorial/python/0005/ 什么是函数 人类语言里面,我们不仅会给人和物起名字, 比如 小张 ...

  8. postgresql 创建用户并创建数据库

    首先通过 sudo -i -u postgres 以管理员身份 postgres 登陆,然后通过 createuser --interactive (-- interactive 是交互式,创建过程可 ...

  9. Ansible工作流程详解

    1:Ansible的使用者 ------>Ansible的使用者来源于多种维度,(1):CMDB(Configuration Management Database,配置管理数据库),CMDB存 ...

  10. OOAD理论知识小结

    软件工程基本概念 软件工程三要素: 方法:完成软件开发的各项任务的技术方法,为软件开发提供 “如何做” 的技术 工具:为运用方法而提供的自动的或半自动的软件工程的支撑环境 过程:为了获得高质量的软件所 ...