洛谷P3302 森林
题意:给定森林,可以把两棵树连起来或者询问链上第k大。
解:启发式合并。
我一开始想到了启发式合并但是发现这样做之后一棵子树就不是一段连续的区间了,那就不能子树xxx了,很迷惘。
后来看了题解发现本来就不需要子树是连续区间......
每次把小的树暴力DFS重构fa[][]和重建主席树。
调了半天是因为lastans没有套上X[]......
注意并查集merge的时候可能有元素为0。无视之即可。
#include <cstdio>
#include <algorithm> const int N = , M = ; struct Edge {
int nex, v;
}edge[N << ]; int top; int X[N], e[N], n, val[N], temp, pw[N], fa[N][], tot, vis[N], father[N], siz[N], d[N], rt[N];
int sum[M], ls[M], rs[M];
char str[]; int find(int x) {
if(father[x] == x) {
return x;
}
return father[x] = find(father[x]);
} inline void merge(int x, int y) {
if(!x || !y) {
return;
}
x = find(x);
y = find(y);
if(x == y) {
return;
}
father[x] = y;
siz[y] += siz[x];
return;
} inline bool check(int x, int y) {
return find(x) == find(y);
} inline void add(int x, int y) {
top++;
edge[top].v = y;
edge[top].nex = e[x];
e[x] = top;
return;
} void add(int x, int &y, int p, int l, int r) {
if(!y || y == x) {
y = ++tot;
sum[y] = sum[x];
ls[y] = ls[x];
rs[y] = rs[x];
}
if(l == r) {
sum[y]++;
return;
}
int mid = (l + r) >> ;
if(p <= mid) {
add(ls[x], ls[y], p, l, mid);
}
else {
add(rs[x], rs[y], p, mid + , r);
}
sum[y] = sum[ls[y]] + sum[rs[y]];
return;
} void DFS(int x, int f) {
merge(x, f);
vis[x] = ;
fa[x][] = f;
d[x] = d[f] + ;
for(int j = ; j <= pw[n]; j++) {
fa[x][j] = fa[fa[x][j - ]][j - ];
}
rt[x] = ;
add(rt[f], rt[x], val[x], , temp);
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == f) {
continue;
}
DFS(y, x);
}
return;
} inline void link(int x, int y) {
if(check(x, y)) {
printf("E1");
exit();
}
if(siz[find(x)] < siz[find(y)]) {
std::swap(x, y);
}
DFS(y, x);
add(x, y);
add(y, x);
return;
} inline int lca(int x, int y) {
if(d[x] > d[y]) {
std::swap(x, y);
}
int t = pw[n];
while(t >= && d[x] != d[y]) {
if(d[fa[y][t]] >= d[x]) {
y = fa[y][t];
}
t--;
}
if(x == y) {
return x;
}
t = pw[n];
while(t >= && fa[x][] != fa[y][]) {
if(fa[x][t] != fa[y][t]) {
x = fa[x][t];
y = fa[y][t];
}
t--;
}
return fa[x][];
} int Ask(int x, int y, int z, int w, int k, int l, int r) {
if(l == r) {
return r;
}
int mid = (l + r) >> , s = ;
s = sum[ls[x]] + sum[ls[y]] - sum[ls[z]] - sum[ls[w]];
if(k <= s) {
return Ask(ls[x], ls[y], ls[z], ls[w], k, l, mid);
}
else {
return Ask(rs[x], rs[y], rs[z], rs[w], k - s, mid + , r);
}
} inline int ask(int x, int y, int k) {
if(!check(x, y)) {
printf("E2");
exit();
}
int z = lca(x, y);
if(d[x] + d[y] - d[z] - d[z] + < k) {
printf("E3");
exit();
}
return Ask(rt[x], rt[y], rt[z], rt[fa[z][]], k, , temp);
} int main() { //freopen("in.in", "r", stdin);
//freopen("my.out", "w", stdout); int m, q;
scanf("%d", &n);
scanf("%d%d%d", &n, &m, &q);
for(int i = ; i <= n; i++) {
scanf("%d", &val[i]);
X[++temp] = val[i];
siz[i] = ;
father[i] = i;
}
for(int i = , x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
for(int i = ; i <= n; i++) {
pw[i] = pw[i >> ] + ;
}
std::sort(X + , X + temp + );
temp = std::unique(X + , X + temp + ) - X - ;
for(int i = ; i <= n; i++) {
val[i] = std::lower_bound(X + , X + temp + , val[i]) - X;
}
for(int i = ; i <= n; i++) {
if(!vis[i]) {
DFS(i, );
}
}
/// build int lastans = ;
for(int i = , x, y, k; i <= q; i++) {
scanf("%s%d%d", str, &x, &y);
if(str[] == 'L') { // link
link(x ^ lastans, y ^ lastans);
}
else {
scanf("%d", &k);
lastans = X[ask(x ^ lastans, y ^ lastans, k ^ lastans)];
printf("%d\n", lastans);
}
} return ;
}
AC代码
洛谷P3302 森林的更多相关文章
- 洛谷$P3302$ 森林 $[SDOI2013]$ 主席树
正解:主席树 解题报告: 传送门! 口胡一时爽代码火葬场 这题想法不难,,,但显然的是代码应该还挺难打的 但反正我也不放代码,就写下题解趴$QwQ$ 第一问就是个$Count\ on\ a\ tree ...
- 洛谷 P3302 [SDOI2013]森林 解题报告
P3302 [SDOI2013]森林 题目描述 小\(Z\)有一片森林,含有\(N\)个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有\(M\)条边. 小Z希望执行\(T\)个操作,操 ...
- 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA
题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
- 洛谷 P3302 [SDOI2013]森林
->题目链接 题解: #include<queue> #include<cstdio> #include<cstring> #include<iostr ...
- 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...
- 洛谷3月月赛 R1 Step! ZERO to ONE
洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...
- 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...
- 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)
洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...
随机推荐
- 20155330 《网络对抗》 Exp6 信息搜集与漏洞扫描
20155330 <网络对抗> Exp6 信息搜集与漏洞扫描 基础问题回答 哪些组织负责DNS,IP的管理? 互联网名称与数字地址分配机构(The Internet Corporation ...
- [Deep-Learning-with-Python]计算机视觉中的深度学习
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面 ...
- Android Studio Xposed模块编写(二)
阅读本文前,假设读者已经看过Android Studio Xposed模块编写(一) 相关环境已经搭建完成.本文演示案例与上文环境一致,不在赘述. 1.概述 Xposed是非常牛叉的一款hook框架 ...
- Grid布局20行代码快速生成瀑布流
网格布局 Grid 布局,好用又简单,至少比 Flex 要人性化一点,美中不足就是浏览器支持度差点. DOM结构 中间夹层为了后续拓展. CSS .grid { display: grid; grid ...
- 12、利用docker快速搭建Wordpress网站
一.准备工作 结构图: 用户访问页面,Nginx将请求进行转发,如果请求的是php页面,则通过FastCGI转发给后端php进行处理:如果非php页面,则直接返回静态页面. 关键点: mysql.ph ...
- 【Android UI设计与开发】第03期:引导界面(三)仿微信引导界面以及动画效果
基于前两篇比较简单的实例做铺垫之后,这一篇我们来实现一个稍微复杂一点的引导界面的效果,当然也只是稍微复杂了一点,对于会的人来说当然还是so easy!正所谓会者不难,难者不会,大概说的就是这个意思了吧 ...
- Web项目开发流程 PC端
一.了解.明确需求. 这个应该是第一步了,不了解需求你就不知道为什么要做,要怎么去做这个项目的工作. (1)明确需求是相当重要的,很有必要去和产品经理.设计人员去沟通,需要明白每一个按钮,每一个开 ...
- 《大象Think in UML》阅读笔记(三)
Think in UML 阅读笔记(三) 把从现实世界中记录下来的原始需求信息,再换成一种可以知道开发的表达方式.UML通过被称为之概念化的过程来建立适合计算机理解和实现的模型,这个模型被称为分析模型 ...
- 老李的blog使用日记(3)
匆匆忙忙.碌碌无为,这是下一个作业,VS,多么神圣高大上,即使这样,有多少人喜欢你就有多少人烦你,依然逃不了被推销的命运,这抑或是它喜欢接受的,但是作为被迫接受者,能做的的也只有接受,而已. 既来之则 ...
- ElasticSearch 2 (23) - 语言处理系列之词根提取
ElasticSearch 2 (23) - 语言处理系列之词根提取 摘要 世界上大多数语言都是屈折变化的,意思是词语可以通过变形来表达不同的含义: 数(Number): fox, foxes 时态( ...