洛谷P3302 森林
题意:给定森林,可以把两棵树连起来或者询问链上第k大。
解:启发式合并。
我一开始想到了启发式合并但是发现这样做之后一棵子树就不是一段连续的区间了,那就不能子树xxx了,很迷惘。
后来看了题解发现本来就不需要子树是连续区间......
每次把小的树暴力DFS重构fa[][]和重建主席树。
调了半天是因为lastans没有套上X[]......
注意并查集merge的时候可能有元素为0。无视之即可。
#include <cstdio>
#include <algorithm> const int N = , M = ; struct Edge {
int nex, v;
}edge[N << ]; int top; int X[N], e[N], n, val[N], temp, pw[N], fa[N][], tot, vis[N], father[N], siz[N], d[N], rt[N];
int sum[M], ls[M], rs[M];
char str[]; int find(int x) {
if(father[x] == x) {
return x;
}
return father[x] = find(father[x]);
} inline void merge(int x, int y) {
if(!x || !y) {
return;
}
x = find(x);
y = find(y);
if(x == y) {
return;
}
father[x] = y;
siz[y] += siz[x];
return;
} inline bool check(int x, int y) {
return find(x) == find(y);
} inline void add(int x, int y) {
top++;
edge[top].v = y;
edge[top].nex = e[x];
e[x] = top;
return;
} void add(int x, int &y, int p, int l, int r) {
if(!y || y == x) {
y = ++tot;
sum[y] = sum[x];
ls[y] = ls[x];
rs[y] = rs[x];
}
if(l == r) {
sum[y]++;
return;
}
int mid = (l + r) >> ;
if(p <= mid) {
add(ls[x], ls[y], p, l, mid);
}
else {
add(rs[x], rs[y], p, mid + , r);
}
sum[y] = sum[ls[y]] + sum[rs[y]];
return;
} void DFS(int x, int f) {
merge(x, f);
vis[x] = ;
fa[x][] = f;
d[x] = d[f] + ;
for(int j = ; j <= pw[n]; j++) {
fa[x][j] = fa[fa[x][j - ]][j - ];
}
rt[x] = ;
add(rt[f], rt[x], val[x], , temp);
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y == f) {
continue;
}
DFS(y, x);
}
return;
} inline void link(int x, int y) {
if(check(x, y)) {
printf("E1");
exit();
}
if(siz[find(x)] < siz[find(y)]) {
std::swap(x, y);
}
DFS(y, x);
add(x, y);
add(y, x);
return;
} inline int lca(int x, int y) {
if(d[x] > d[y]) {
std::swap(x, y);
}
int t = pw[n];
while(t >= && d[x] != d[y]) {
if(d[fa[y][t]] >= d[x]) {
y = fa[y][t];
}
t--;
}
if(x == y) {
return x;
}
t = pw[n];
while(t >= && fa[x][] != fa[y][]) {
if(fa[x][t] != fa[y][t]) {
x = fa[x][t];
y = fa[y][t];
}
t--;
}
return fa[x][];
} int Ask(int x, int y, int z, int w, int k, int l, int r) {
if(l == r) {
return r;
}
int mid = (l + r) >> , s = ;
s = sum[ls[x]] + sum[ls[y]] - sum[ls[z]] - sum[ls[w]];
if(k <= s) {
return Ask(ls[x], ls[y], ls[z], ls[w], k, l, mid);
}
else {
return Ask(rs[x], rs[y], rs[z], rs[w], k - s, mid + , r);
}
} inline int ask(int x, int y, int k) {
if(!check(x, y)) {
printf("E2");
exit();
}
int z = lca(x, y);
if(d[x] + d[y] - d[z] - d[z] + < k) {
printf("E3");
exit();
}
return Ask(rt[x], rt[y], rt[z], rt[fa[z][]], k, , temp);
} int main() { //freopen("in.in", "r", stdin);
//freopen("my.out", "w", stdout); int m, q;
scanf("%d", &n);
scanf("%d%d%d", &n, &m, &q);
for(int i = ; i <= n; i++) {
scanf("%d", &val[i]);
X[++temp] = val[i];
siz[i] = ;
father[i] = i;
}
for(int i = , x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
for(int i = ; i <= n; i++) {
pw[i] = pw[i >> ] + ;
}
std::sort(X + , X + temp + );
temp = std::unique(X + , X + temp + ) - X - ;
for(int i = ; i <= n; i++) {
val[i] = std::lower_bound(X + , X + temp + , val[i]) - X;
}
for(int i = ; i <= n; i++) {
if(!vis[i]) {
DFS(i, );
}
}
/// build int lastans = ;
for(int i = , x, y, k; i <= q; i++) {
scanf("%s%d%d", str, &x, &y);
if(str[] == 'L') { // link
link(x ^ lastans, y ^ lastans);
}
else {
scanf("%d", &k);
lastans = X[ask(x ^ lastans, y ^ lastans, k ^ lastans)];
printf("%d\n", lastans);
}
} return ;
}
AC代码
洛谷P3302 森林的更多相关文章
- 洛谷$P3302$ 森林 $[SDOI2013]$ 主席树
正解:主席树 解题报告: 传送门! 口胡一时爽代码火葬场 这题想法不难,,,但显然的是代码应该还挺难打的 但反正我也不放代码,就写下题解趴$QwQ$ 第一问就是个$Count\ on\ a\ tree ...
- 洛谷 P3302 [SDOI2013]森林 解题报告
P3302 [SDOI2013]森林 题目描述 小\(Z\)有一片森林,含有\(N\)个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有\(M\)条边. 小Z希望执行\(T\)个操作,操 ...
- 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA
题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
- 洛谷 P3302 [SDOI2013]森林
->题目链接 题解: #include<queue> #include<cstdio> #include<cstring> #include<iostr ...
- 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...
- 洛谷3月月赛 R1 Step! ZERO to ONE
洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...
- 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...
- 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)
洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...
随机推荐
- WPF编程,自定义鼠标形状的一种方法。
原文:WPF编程,自定义鼠标形状的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/details/8727 ...
- 同步、异步、回调执行顺序之经典闭包setTimeout分析
聊聊同步.异步和回调 同步,异步,回调,我们傻傻分不清楚, 有一天,你找到公司刚来的程序员小T,跟他说:“我们要加个需求,你放下手里的事情优先支持,我会一直等你做完再离开”.小T微笑着答应了,眼角却滑 ...
- 浅析java构造函数前的访问限定符问题
曾经一直有个问题困扰着我,我一直以为构造函数前面不能加任何东西,但偶然间看到了一本书上写的代码中,构造函数前加了public限定符,心里很是疑惑,构造函数前加毛访问限定符啊??! 在网上查了很多资料 ...
- TKmath Package gp数据类型
点,向量,方向 二维:gp_Pnt2d, gp_Vec2d, gp_Dir2d:它们的内部都存储 gp_XY 三维:gp_Pnt, gp_Vec, gp_Dir:它们的内部都存储 gp_XYZ 轴向与 ...
- Windows 7上安装配置TensorFlow-GPU运算环境
Windows 7上安装配置TensorFlow-GPU运算环境 1. 概述 在深度学习实践中,对于简单的模型和相对较小的数据集,我们可以使用CPU完成建模过程.例如在MNIST数据集上进行手写数字识 ...
- 1090. Highest Price in Supply Chain (25)-dfs求层数
给出一棵树,在树根出货物的价格为p,然后每往下一层,价格增加r%,求所有叶子节点中的最高价格,以及该层叶子结点个数. #include <iostream> #include <cs ...
- PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)
题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...
- 20181023-3 每周例行报告(添加PSP)
此作业要求:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2100] 一.本周PSP表格 类型 任务 开始时间 结束时间 中断时间 净时 ...
- linux第一次实验报告
http://wwwcnblogs.com/20135228guoyao/4964477.html
- Validform验证时可以为空,否则按照指定格式验证
在使用Validform v5.3.2时(http://validform.rjboy.cn/) 问题:可以为空,但不为空时需要按照指定格式验证数据 查看文档: 5.2.1版本之后,datatype支 ...