A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.
  • If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7

8 6 5 7 10 8 11

Sample Output 1:

YES

5 7 6 8 11 10 8

Sample Input 2:

7

8 10 11 8 6 7 5

Sample Output 2:

YES

11 8 10 7 5 6 8

Sample Input 3:

7

8 6 8 5 10 9 11

Sample Output 3:

NO

算法思路简单描述:先不管是不是BST,先根据输入序列,插入建树(BST),如果建完之后的树,它的前序遍历与所给序列相同,那么所给的序列显然是可以构成BST的,应该给出YES,当然所给的序列还应和镜像的遍历比较,如果相同,也可以给出YES。

所以可以用三个数组存(输入序列,树的前序遍历,镜像树的前序遍历),但因为数组不太好比较,用vector更加方便,因为它重载了==符号。

#include<bits/stdc++.h>
using namespace std;
int N;
struct node{
int data;
node* lchild;
node* rchild;
};
void insert(node* &root,int data){
if(root==NULL){
root=new node;
root->data=data;
root->lchild=root->rchild=NULL;
return;
}
if(data<root->data)insert(root->lchild,data);
else insert(root->rchild,data);
}
void preOrder(node* root,vector<int>& vi){
if(root==NULL)return;
vi.push_back(root->data);
preOrder(root->lchild,vi);
preOrder(root->rchild,vi);
}
void preOrderMirror(node* root,vector<int>& vi){
if(root==NULL)return;
vi.push_back(root->data);
preOrderMirror(root->rchild,vi);
preOrderMirror(root->lchild,vi);
}
void postOrder(node* root,vector<int>& vi){
if(root==NULL) return;
postOrder(root->lchild,vi);
postOrder(root->rchild,vi);
vi.push_back(root->data);
}
void postOrderMirror(node* root,vector<int>& vi){
if(root==NULL) return;
postOrderMirror(root->rchild,vi);
postOrderMirror(root->lchild,vi);
vi.push_back(root->data);
}
vector<int> origin,pre,preM,post,postM;
int main(){
cin>>N;
int data;
node* root=NULL;// final root
for(int i=0;i<N;i++){
scanf("%d",&data);
origin.push_back(data);
insert(root,data);
}
preOrder(root,pre);
preOrderMirror(root,preM);
postOrder(root,post);
postOrderMirror(root,postM);
if(origin==pre){
printf("YES\n");
for(int i=0;i<post.size();i++){
printf("%d",post[i]);
if(i<post.size()-1)printf(" ");
}
}
else if(origin==preM){
printf("YES\n");
for(int i=0;i<postM.size();i++){
printf("%d",postM[i]);
if(i<postM.size()-1)printf(" ");
}
}
else{
printf("NO\n");
}
return 0;
}

A1043 Is It a Binary Search Tree (25 分)的更多相关文章

  1. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  2. 1043 Is It a Binary Search Tree (25分)(树的插入)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  3. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  4. 【PAT甲级】1043 Is It a Binary Search Tree (25 分)(判断是否为BST的先序遍历并输出后序遍历)

    题意: 输入一个正整数N(<=1000),接下来输入N个点的序号.如果刚才输入的序列是一颗二叉搜索树或它的镜像(中心翻转180°)的先序遍历,那么输出YES并输出它的后序遍历,否则输出NO. t ...

  5. 04-树7. Search in a Binary Search Tree (25)

    04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 ...

  6. pat04-树7. Search in a Binary Search Tree (25)

    04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 ...

  7. pat1043. Is It a Binary Search Tree (25)

    1043. Is It a Binary Search Tree (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN ...

  8. PTA 04-树6 Complete Binary Search Tree (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree   (30分) A ...

  9. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  10. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

随机推荐

  1. 设置泛域名和设置IIS下面不同网站通过不同域名公用80端口的操作指引

    原文链接: http://www.lookdaima.com/WebForms/WebPages/Blanks/Pm/Docs/DocItemDetail.aspx?id=4be204ca-249b- ...

  2. 按ctrl+shift切换不了输入法

    解决方法: 1.在任务栏上的输入法图标上点右键选择设置2.选择键设置,双击第一个“在不同的输入语言之间切换”先勾选“切换输入语言”下面选择左手ALT.取消右边“切换键盘布局”前的勾3.进入“中文(简体 ...

  3. JDK5 新特性之 可变参数的方法(2)---asList

    > Arrays.asList(T - a)方法的使用 >UnsupportedOperationException分析     Arrays.asList(T - a)方法的使用 pac ...

  4. hyper-v NAT网络

    宿主机:windows 2008 R2 企业版 hyper-V配置静态IP地址 https://jingyan.baidu.com/article/925f8cb8ae1ee2c0dde05632.h ...

  5. Hadoop HBase概念学习系列之HLog(二)

    首先,明确,HRegion服务器包含两大部分:HLog和HRegion. HLog用来存储数据日志,采用的是先写日志的方式. 当用户需要更新数据的时候,数据会被分配到对应的HRegion服务器上提交修 ...

  6. CSS 居中大全(转)

    引用:http://jinlong.github.io/blog/2013/08/13/centering-all-the-directions/ CSS 居中大全 AUG 13TH, 2013 |  ...

  7. Angular2学习笔记(1)——Hello World

    1. 写在前面 之前基于Electron写过一个Markdown编辑器.就其功能而言,主要功能已经实现,一些小的不影响使用的功能由于时间关系还没有完成:但就代码而言,之前主要使用的是jQuery,由于 ...

  8. Redis系列六:redis相关功能

    一. 慢查询原因分析 与mysql一样:当执行时间超过阀值,会将发生时间耗时的命令记录 redis命令生命周期:发送 排队 执行 返回慢查询只统计第3个执行步骤的时间 预设阀值:两种方式,默认为10毫 ...

  9. [POI2007]MEG-Megalopolis

    传送门:嘟嘟嘟 第一反应是树链剖分,但是太长懒得写,然后就想出了一个很不错的做法. 想一下,如果我们改一条边,那么影响的只有他的子树,只要先搞一个dfs序,为什么搞出这个呢?因为有一个性质:一个节点的 ...

  10. 拯救U盘之——轻松修复U盘“无法访问”的故障

    在使用U盘或者移动硬盘的过程中,大家是否和我一样,有个不好的操作习惯,明知不好但是在每次使用时都很少记得“安全删除硬件”,随手一把走人.终于出问题了,那天给mm复制完资料,拔了再插到自己的电脑上,打开 ...