构造出模线性方程c * x = b - a mod (2 ^ k)

很容易解。

利用LRJ书上的方法。

#include <iostream>

using namespace std;

#define LL long long int

LL ext_gcd(LL a, LL b, LL& x, LL& y)
{
LL t, ret;
if (!b){
x = 1, y = 0;
return a;
}
ret = ext_gcd(b, a%b, x, y);
t = x, x = y, y = t - a / b*y;
return ret;
}
//ax = b (mod n)
void gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if (!b)
{
d = a, x = 1, y = 0;
}
else
{
gcd(b, a %b, d, y, x);
y -= x * (a / b);
}
}
LL modular_linear_equation(LL a, LL b, LL n)
{
long long x, y, e, d;
gcd(a, n, d, x, y);
if (b % d) return -1;
e = b / d * x % n + n;
return e % (n / d);
}
int main()
{
////c * x = b - a mod (2 ^ k)
int a, b, c, k;
while (cin >> a >> b >> c >> k && (a || b || c || k))
{
LL num = modular_linear_equation(c, b - a, 1LL << k);
if (num == -1)
{
cout << "FOREVER" << endl;
continue;
}
cout << num << endl;
}
}

poj2115的更多相关文章

  1. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  2. poj2115 C Looooops(exgcd)

    poj2115 C Looooops 题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. ...

  3. poj2115(扩展欧基里德定理)

    题目链接:https://vjudge.net/problem/POJ-2115 题意:模拟for循环for(int i=A;i!=B;i+=C),且数据范围为k位无符号数以内,即0~1<< ...

  4. POJ2115 C Looooops 扩展欧几里德

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...

  5. POJ2115 C Looooops[扩展欧几里得]

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24355   Accepted: 6788 Descr ...

  6. POJ2115 C Looooops(线性同余方程)

    无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...

  7. POJ2115 C Looooops 模线性方程(扩展欧几里得)

    题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...

  8. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  9. POJ2115 C Looooops(数论)

    题目链接. 分析: 数论了解的还不算太多,解的时候,碰到了不小的麻烦. 设答案为x,n = (1<<k), 则 (A+C*x) % n == B 即 (A+C*x) ≡ B (mod n) ...

  10. POJ2115(扩展欧几里得)

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23700   Accepted: 6550 Descr ...

随机推荐

  1. Servlet笔记7--HttpServletRequest介绍

    通过HttpServletRequest获取表单提交的数据: 前端页面: <html> <head> <title>register</title> & ...

  2. 云计算--hbase shell

    具体的 HBase Shell 命令如下表 1.1-1 所示: 下面我们将以“一个学生成绩表”的例子来详细介绍常用的 HBase 命令及其使用方法. 这里 grad 对于表来说是一个列,course ...

  3. AtomicInteger源码

    一.概念 AtomicInteger,一个提供原子操作的Integer的类.在Java语言中,++i和i++操作并不是线程安全的,在使用的时候,不可避免的会用到synchronized关键字.而Ato ...

  4. C# sha256 加密算法

    C# 非对称加密 public string sha256(string data) { byte[] bytes = Encoding.UTF8.GetBytes(data); byte[] has ...

  5. device-pixel-radio

    移动web开发之像素和DPR 今天看到一个面试题,为iphone6s的自适应,答案是@media(min-device-width:414px) and(max-device-width:736px) ...

  6. RandomForest随机森林总结

    1.随机森林原理介绍 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标.简单来说,随机森林就是由多棵CA ...

  7. 使用react中遇到的问题

    引入antdesign中Carousel走马灯时遇到问题? Uncaught Error: Element ref was specified as a string (slick) but no o ...

  8. Java编程的逻辑 (37) - 泛型 (下) - 细节和局限性

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  9. hdu 1698 线段树(成段替换 区间求和)

    一条钩子由许多小钩子组成 更新一段小钩子 变成铜银金 价值分别变成1 2 3 输出最后的总价值 Sample Input11021 5 25 9 3 Sample OutputCase 1: The ...

  10. word2vec中的数学原理一 目录和前言

    最近在看词向量了,因为这个概念对于语言模型,nlp都比较重要,要好好的学习一下.把网上的一些资料整合一下,搞个系列. 主要参考:    word2vec 中的数学原理详解                ...