作为一个脱离了低级趣味的码农,春节假期闲来无事,决定做一些有意思的事情打发时间,碰巧看到这篇论文: A neural style of convolutional neural networks,译作卷积神经网络风格迁移。 这不是“暮光女”克里斯丁的研究方向吗?!连好莱坞女星都开始搞人工智能发paper,真是热的可见一斑!

这篇文章中讲述了如何用深层卷积神经网络来将一张普通的照片转化成一幅艺术风格的画作(比如梵高的星夜),可以看做是DL(deep learning)在NPR(非真实渲染non photography rendering)领域的一次革命(不难想象以后DL这种跨领域的革命会越来越多)。

论文地址:A Neural Algorithm of Artistic Style 
项目地址:https://github.com/muyiguangda/neural-style

算法解析

(对算法不感兴趣的童鞋,可以直接跳过这一部分,看最终实验结果)

【总流程】

如上,a有个别名是conv1_1,b是conv2_1,依次类推,c,d,e对应conv3_1conv4_1conv5_1;输入图片有风格图片style image和内容图片content image,输出的是就是合成图片,然后用合成图片为指导训练,但是训练的对象不像是普通的神经网络那样训练权值w和偏置项b,而是训练合成图片上的像素点,以达到损失函数不断减少的效果。论文使用的是随机的噪声像素图为初始合成图,但是使用原始图片会快一点。

首先他定义了两个loss,分别表示最终生成的图x和style图a的样式上的loss,以及x和content图p的内容上的loss,α,β是调节两者比例的参数。最终的loss function是两者的加和。通过optimize总的loss求得最终的x。

所用的CNN网络是VGG-19,利用了它16个卷积层和5个pooling层来生成feature。实际指的是Conv+ReLU的复合体。

当然,使用其他pre-trained的model也是完全可以的,比如GoogLet V2,ResNet,VGG16 都是可以的(作者这哪是以VGG19为例)。

【内容损失函数】

  • l代表第l层的特征表示,p是原始图片,x是生成图片。
  • 假设某一层得到的响应是Fl∈RNl∗Ml,其中Nl为l层filter的个数,Ml为filter的大小。Flij表示的是第l层第i个filter在位置j的输出。
  • 公式的含义就是对于每一层,原始图片生成特征图和生成图片的特征图的一一对应做平方差

求内容损失函数梯度下降如下:

【风格损失函数】

  • F是生成图片的特征图。上面式子的含义:Gram第i行,第j列的数值等于把生成图在第l层的第i个特征图与第j个特征图分别拉成一维后相乘求和。

  • 上面是风格损失函数,Nl是指生成图的特征图数量,Ml是图片宽乘高。a是指风格图片,x是指生成图片。G是生成图的Gram矩阵,A是风格图的Gram矩阵,wl是权重。

【总损失】

实验结果

下面是内容图,风格图,以及迭代10次,100次,500次,1000次,10000次,10万次的计算结果及分析:

【原图】

原图片如果尺寸过大,导致input层的batch size过大,会大大增加程序计算量(从而延长计算时间),容易引起程序不稳定,而对最终效果并没有明显提升,因此建议把图片尺寸尽量缩小(在像素不失真的前提下),推荐值:800 ppi x 600 ppi.

【风格图】

风格图不需要和内容图尺寸一致。可以适当裁剪,保留风格最突出的部分。

【迭代10次】

由于原始的输入是一张白噪声图片,因此,在迭代次数较少时,仍然没有形成内容图的轮廓。

【迭代100次】

天安门的轮廓初现

【迭代500次】

已经基本接近最终效果,既能看到天安门的形状,又有梵高“星夜”的线条风格和颜色搭配。

【迭代1000次】

500次到1000次,画面构成的变化已经不剧烈,基本趋于平稳。

【迭代500次,重复执行三次】

重复计算了三次,使用相同的图片,相同的卷积神经网络模型,相同的迭代次数(500次),却得到了区别明显的三张结果图。这是非常有意思的地方!

(a)                                                       (b)                                                       (c)

  

最近看完一本书,叫《随机漫步的傻瓜》,主要讨论随机性这个概念,随机性中隐藏着不可预测的风险,也蕴含着无限的可能性。没有随机变异,生物进化可能还处在单细胞阶段。

如果计算机只是一个工具,让它解一个方程组,如果已知数确定,计算条件确定,无论计算多少次,结果都是同一个。

这个例子中,结果出现了差异,说明这个系统中一定有随机的成分存在。

机器学习中随机性出现的部分通常如下:1. 训练样本的乱序操作;2. 随机梯度下降;3. 模型随机赋初始值。

本例中还多一条:初始输入的白噪声图像是随机生成的。

【迭代10000次】

可以看到画面右上部分,内容渐渐丢失,呈现灰色化。

推测原因:由于卷积神经网络中的若干pooling层,实际是对图像进行了均值处理,导致了边缘细节的丢失。

pooling层示意图:

那么,迭代10万次是什么样子的呢?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

【迭代10万次】

画面朝着两极化趋势发展,灰色区域更加暗淡,彩色区域更加明亮,两者之间的界限更加分明,失去了过渡。

【原创】梵高油画用深度卷积神经网络迭代10万次是什么效果? A neural style of convolutional neural networks的更多相关文章

  1. 【原创】梵高油画用深度卷积神经网络迭代十万次是什么效果? A neural style of convolutional neural networks

    作为一个脱离了低级趣味的码农,春节假期闲来无事,决定做一些有意思的事情打发时间,碰巧看到这篇论文: A neural style of convolutional neural networks,译作 ...

  2. DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究

    一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...

  3. [DeeplearningAI笔记]卷积神经网络3.10候选区域region proposals与R-CNN

    4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.10 region proposals候选区域与R-CNN 基于滑动窗口的目标检测算法将原始图片分割成小的样本图片,并传入分 ...

  4. 优化基于FPGA的深度卷积神经网络的加速器设计

    英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/k ...

  5. 基于theano的深度卷积神经网络

    使用了两个卷积层.一个全连接层和一个softmax分类器. 在测试数据集上正确率可以达到99.22%. 代码参考了neural-networks-and-deep-learning #coding:u ...

  6. 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks

    This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...

  7. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  8. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

  9. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

随机推荐

  1. 如何把高版本的sqlserver 还原到低版本的 sqlserver(转载)

    本例为sql2012 还原到sql2008. 要实现的功能是把sql2012的数据库备份到sql2008,数据库名字为Test,并且这两个数据库在不同的电脑中. 微软的软件设计方案基本上都是新版本兼容 ...

  2. 【转载】Please configure Android Sdk(android studio)解决办法

    https://blog.csdn.net/u011622280/article/details/79005453 studio就报Please configure Android Sdk,重启and ...

  3. 斯诺克台球比赛规则 (Snooker)

    斯诺克台球比赛规则 斯诺克(Snooker)的意思是“阻碍.障碍”,所以斯诺克台球有时也被称为障碍台球.此项运动使用的球桌长约3569毫米.宽1778毫米,台面四角以及两长边中心位置各有一个球洞,使用 ...

  4. 在Ubuntu17.04中遇到无法清空回收站解决方法

    在Ubuntu17.04下,遇到清空回收站文件时报错,提示”Failed to delete the item from the trash”,无法清空回收站. 回收站其实就是一个文件夹,存放着被删掉 ...

  5. 【C语言】 8421BCD码与二进制的转换

    #define BCD2TODEC(bcd) (bcd) = ((bcd) & 0x0f)+ ((bcd)>>4)*10 #define BIN2BCD(bcd) (bcd) = ...

  6. Hadoop HBase概念学习系列之HBase里的客户端和HBase集群建立连接(详细)(十四)

    需要遵循以下步骤: 1.客户端和Zookeeper集群建立连接.在这之前客户端需要获得一些信息(可以从HBase配置文件中读取或是直接指定).客户端从Zookeeper集群中读取-ROOT-表的位置信 ...

  7. 根据字体多少使UILabel自动调节尺寸

    原文:http://blog.csdn.net/enuola/article/details/8559588 在大多属性情况下,给UILabel进行动态数据绑定的时候,往往需要根据字符串的多少,动态调 ...

  8. November 06th, 2017 Week 45th Monday

    The education of a man is never completed until he dies. 一个人的学习之路,到死才结束. Being a life-long learning ...

  9. P1231 教辅的组成

    传送门:https://www.luogu.org/problemnew/show/P1231 这是一道很不错的网络流入门题,关键在于如何建图. 首先,我们将练习册和源点连一条边权为1的边,然后若书 ...

  10. ethereumjs/ethereumjs-wallet

    Utilities for handling Ethereum keys ethereumjs-wallet A lightweight wallet implementation. At the m ...