CF1017G The Tree
/*
这是什么神仙题目QAQ
首先考虑在序列上的问题
先不考虑修改成白色, 一个白点能r被染成黑色 意味着能够找到一个l使得在l-r中的操作1次数大于等于
r - l + 1
我们把初始值覆盖成-1就相当于单点+1求最大后缀和了
然后覆盖成白色, 相当于在这个点减去一些值使得最后到达他的最大后缀是-1, 然后对子树进行覆盖
上树同理 树剖即可
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#define pii pair<int, int>
#include<cmath>
#define ll long long
#define M 100010
#define mmp make_pair
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
int fa[M], sz[M], son[M], dfn[M], dft, top[M], deep[M], n, q;
vector<int> to[M];
#define ls now << 1
#define rs now << 1 | 1
#define lson l, mid, now << 1
#define rson mid + 1, r, now << 1 | 1
void dfs(int now, int f) {
deep[now] = deep[f] + 1;
sz[now] = 1;
for(int i = 0; i < to[now].size(); i++) {
int vj = to[now][i];
dfs(vj, now);
if(sz[son[now]] < sz[vj]) son[now] = vj;
sz[now] += sz[vj];
}
}
void dfs(int now) {
dfn[now] = ++dft;
if(son[now]) {
top[son[now]] = top[now];
dfs(son[now]);
}
for(int i = 0; i < to[now].size(); i++) {
int vj = to[now][i];
if(vj == son[now]) continue;
top[vj] = vj;
dfs(vj);
}
}
int len[M << 2], mx[M << 2], s[M << 2], laz[M << 2];
void pushup(int now) {
mx[now] = max(mx[rs], mx[ls] + s[rs]);
s[now] = s[ls] + s[rs];
}
void add(int now) {
laz[now] = 1;
mx[now] = -1, s[now] = -len[now];
}
void pushdown(int now) {
if(!laz[now]) return;
add(ls);
add(rs);
laz[now] = 0;
}
void build(int l, int r, int now) {
len[now] = r - l + 1;
if(l == r) {
mx[now] = s[now] = -1;
return;
}
int mid = (l + r) >> 1;
build(lson), build(rson);
pushup(now);
}
void modify(int l, int r, int now, int pl, int v) {
if(l > pl || r < pl) return;
if(l == r) {
mx[now] += v, s[now] += v;
return;
}
pushdown(now);
int mid = (l + r) >> 1;
modify(lson, pl, v), modify(rson, pl, v);
pushup(now);
}
void cover(int l, int r, int now, int ln, int rn) {
if(l > rn || r < ln) return;
if(l >= ln && r <= rn) {
add(now);
return;
}
pushdown(now);
int mid = (l + r) >> 1;
cover(lson, ln, rn), cover(rson, ln, rn);
pushup(now);
}
pair<int,int> biao, tmp;
pii operator + (pii a, pii b) {
return mmp(max(b.first, a.first + b.second), a.second + b.second);
}
pii que(int l, int r, int now, int ln, int rn) {
if(l >= ln && r <= rn) return mmp(mx[now], s[now]);
int mid = (l + r) >> 1;
pushdown(now);
if(rn <= mid) return que(lson, ln, rn);
if(ln > mid) return que(rson, ln, rn);
return que(lson, ln, rn) + que(rson, ln, rn);
}
int query(int x) {
tmp = biao;
for(; x; x = fa[top[x]]) {
tmp = que(1, n, 1, dfn[top[x]], dfn[x]) + tmp;
}
return tmp.first;
}
int main() {
biao = mmp(-0x3e3e3e3e, 0);
n = read(), q = read();
for(int i = 2; i <= n; i++) fa[i] = read(), to[fa[i]].push_back(i);
dfs(1, 1);
top[1] = 1;
dfs(1);
build(1, n, 1);
while(q--) {
int op = read(), x = read();
if(op == 1) {
modify(1, n, 1, dfn[x], 1);
}
if(op == 2) {
int t = query(x);
modify(1, n, 1, dfn[x], -(t + 1));
if(sz[x] > 1) cover(1, n, 1, dfn[x] + 1, dfn[x] + sz[x] - 1);
}
if(op == 3) {
puts(query(x) >= 0 ? "black" : "white");
}
}
return 0;
}
CF1017G The Tree的更多相关文章
- CF1017G The Tree 树链剖分
CF1017G The Tree LG传送门 树链剖分好题. 乍一看还以为是道沙比题,然后发现修改操作有点不一样. 但是如果你对基本操作还不太熟练,可以看看我的树链剖分总结 有三个操作: 从一个点往下 ...
- CF1017G——The Tree
传送门:QAQQAQ 题意:给你一棵树,有三种操作,设所有点本来未感染 1:感染节点i,若i被二次感染,则感染i的儿子(若儿子也被感染,则感染孙子,直到到底或者感染了健康点) 2:使i子树全部健康 3 ...
- [CF1017G]The Tree[树链剖分+线段树]
题意 给一棵一开始 \(n\) 个点全是白色的树,以 \(1\) 为根,支持三种操作: 1.将某一个点变黑,如果已经是黑色则该操作对所有儿子生效. 2.将一棵子树改成白色. 3.询问某个点的颜色. \ ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
- 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
随机推荐
- MOSSE(DSST)类和KCF类中滤波器推导结果不一致的解释
首先要说明,DSST//BMVC2014类的CF是从MOSSE//CVPR2010模型得到的,是从信号的角度考虑问题,该类CF直接认为信号和滤波器之间存在相关的关系 而KCF//TPAMI2015类C ...
- python编码encode decode(解惑)
关于python 字符串编码一直没有搞清楚,今天总结了一下. Python 字符串类型 Python有两种字符串类型:str 与 unicode. 字符串实例 # -*- coding: utf-8 ...
- Spring Cloud(Dalston.SR5)--Eureka 服务提供者
要使微服务应用向注册中心发布自己,首先需要在 pom.xml 配置文件中增加对 spring-boot-starter-eureka 的依赖,然后在主类中增加 @EnableDiscoveryClie ...
- centos7 tomcat自启动
第一步: vim /lib/systemd/system/tomcat.service [Unit] Description=tomcat After=network.target [Service] ...
- java小程序(课堂作业02)
1,三种方法计算组合数 ①设计思路:第一种方法就是通过阶乘公式然后运用公式计算出组合数,第二种通过公式推导出cnk=n/(n-k)cnk-1,然后然后从ckk 开始运算到cnk,第三种方法就是通过递归 ...
- docker-compose编排springcloud微服务
.创建注册中心Eureka package com.dan.eurekaserver; import org.springframework.boot.SpringApplication; impor ...
- Linux Bash on Win10 (WSL)在cmder下使用vim时方向键失灵问题解决
更改方法 由于cmder和bash.exe不兼容,如果你直接输入bash ~,那么进入子系统后将无法使用方向键和Home/PageUp/PageDown等键都无法使用,网上常见的cmder配置过程如下 ...
- 关于Zookeeper选举机制
zookeeper集群 配置多个实例共同构成一个集群对外提供服务以达到水平扩展的目的,每个服务器上的数据是相同的,每一个服务器均可以对外提供读和写的服务,这点和redis是相同的,即对客户端来讲每个服 ...
- Ubuntu 14.10 下连接SuperVessel Cloud
第一次创建实例后,系统会分配一个VPN用户,用于连接到系统. 官方帮助文档给出了使用方法 Linux VPN 客户端的配置方法 . 安装 VPNC: $ apt-get install vpnc $ ...
- 图像处理PILLOW的使用
1.安装 pip install Pillow 2.使用 1)图片缩放 from PIL import Imageim = Image.open('dog.jpg') w,h = im.size #获 ...