2257: [Jsoi2009]瓶子和燃料

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1326  Solved: 815
[Submit][Status][Discuss]

Description

jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。

Input

第1行:2个整数N,K, 
第2..N 行:每行1个整数,第i+1 行的整数为Vi

Output

仅1行,一个整数,表示火星人给出燃料的最大值。

Sample Input

3 2
3
4
4

Sample Output

4

HINT

选择第2 个瓶子和第 个瓶子,火星人被迫会给出4 体积的容量。

Source

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2257

题目大意:给定n个瓶子,选择k个,可以随便导油,问选择k个瓶子可以导出的油数量的最小值的最大值

分析:首先易知k个瓶子能导出的油最小值一定是k个瓶子容量的最大公因数 于是问题转化成了在n个数中选择k个 使最大公因数最大

找出n个数的所有因数 排序 找出最大的且出现次数大于等于k的输出即可!

裴蜀定理:证明过程参考裴蜀定理(贝祖定理)及证明

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
const int N=;
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
{
write(x/);
}
putchar(x%+'');
}
inline int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int a[N],top,n,k;
int main()
{
n=read();
k=read();
for(int i=,x;i<=n;i++)
{
x=read();
for(int j=;j*j<=x;j++)
{
if(x%j==)
{
a[++top]=j;
if(j*j!=x)
a[++top]=x/j;
}
}
}
sort(a+,a+top+);
for(int i=top-,cnt=;i>=;i--)
{
if(a[i]==a[i+])
cnt++;
else cnt=;
if(cnt==k)
{
printf("%d\n",a[i]);
break;
}
}
return ;
}

BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】的更多相关文章

  1. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  2. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  3. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  4. BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】

    题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...

  5. [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)

    [BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...

  6. 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料

    bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...

  7. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  8. BZOJ-2257:瓶子和燃料(裴蜀定理)

    jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...

  9. bzoj 2257: [Jsoi2009]瓶子和燃料

    #include<cstdio> #include<iostream> #include<algorithm> #include<cmath> usin ...

随机推荐

  1. mac下配置caffe

    Step1:安装homebrew 如果电脑上有,暂时不装.但是在step2(或者其他需要brew的情况)加完sudo之后如果仍然报错,就需要重新安装homebrew.在终端里输入如下命令: ruby  ...

  2. Java面试题汇总

    第一阶段:三年我认为三年对于程序员来说是第一个门槛,这个阶段将会淘汰掉一批不适合写代码的人.这一阶段,我们走出校园,迈入社会,成为一名程序员,正式从书本 上的内容迈向真正的企业级开发.我们知道如何团队 ...

  3. mysql case when group by实例

    mysql 中类似php switch case 的语句. select xx字段, case 字段 when 条件1 then 值1 when 条件2 then 值2 else 其他值 END 别名 ...

  4. 从底层角度看ASP.NET-A low-level Look at the ASP.NET...

    从更低的角度 这篇文章在一个底层的角度来关注一个web请求怎样到达asp.net框架,从web服务器,通过ISAPI.看看这些后面发生了什么,让我们停止对asp.net的黑箱猜想.ASP.NET是一个 ...

  5. Nodejs真.多线程处理

    前言 Threads à gogo 是nodejs 的原生模块,使用这个模块可以让nodejs 具备多线程处理功能 安装方法 npm install threads_a_gogo 下载测试源码 git ...

  6. 用python爬整本小说写入txt文件

    没太完善,但是可以爬下整本小说.日后会写入数据库,注释不要太在意,都是调试的.入库估计这周之后,这次爬的是笔趣阁的第1150本书,大家只要可以改get_txt()里数字就行,查到自己要看哪本书一改就可 ...

  7. C#学习之设计模式:工厂模式

    最近研究一下设计模式中工厂模式的应用,在此记录如下: 什么是工厂模式? 工厂模式属于设计模式中的创造型设计模式的一种.它的主要作用是协助我们创建对象,为创建对象提供最佳的方式.减少代码中的耦合程度,方 ...

  8. 微信小程序一:微信小程序UI组件、开发框架、实用库

    作者:NiceCui 本文谢绝转载,如需转载需征得作者本人同意,谢谢. 本文链接:http://www.cnblogs.com/NiceCui/p/8079095.html 内容持续更新,维护中 邮箱 ...

  9. 使用ListView控件展示数据

    属性名称    说明items   指定显示那种视图View   指定显示那种视图largelmagelist  大图标图像的imagelist控件SmallLmagelist  小图标图像的imag ...

  10. 什么是ObjCTypes?

    先看一下消息转发流程: 在forwardInvocation这一步,你必须要实现一个方法: - (NSMethodSignature *)methodSignatureForSelector:(SEL ...