安装、
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev
# Ubuntu/Linux 64-bit, CPU only, Python 2.7
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl
# Python 2
$ sudo pip install --upgrade $TF_BINARY_URL # Python 3
$ sudo pip3 install --upgrade $TF_BINARY_URL

测试一、
$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>

测试二、

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random learning_rate = 0.01
training_epochs = 1000
display_step = 50
#数据集x
train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,9.27,3.1])
#数据集y
train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09,
2.827,3.19,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
X = tf.placeholder("float")
Y = tf.placeholder("float") W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias") pred = tf.add(tf.mul(X, W), b) cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init) # 训练数据
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y}) print "优化完成!"
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n' #可视化显示
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

测试二效果:

更多技术干货请关注:

机器学习(3)-Tensorflow安装与测试的更多相关文章

  1. TensorFlow安装与测试

    官网:http://tensorflow.org/安装步骤:1.sudo apt-get install python-pip python-dev python-virtualenv 2.virtu ...

  2. TensorFlow 安装详解

    摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! 『不要把手段当成目标 — <一个瑜伽行者的自传>』   本文提纲 1. 机器学习 2 ...

  3. 机器学习之TensorFlow编程环境_TensorFlow_Estimator

    title: Machine-learning subtitle: 1. 机器学习之TensorFlow编程环境_TensorFlow_Estimator date: 2018-12-13 10:17 ...

  4. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  5. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  6. 深度学习之TensorFlow安装与初体验

    深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的 ...

  7. tensorflow安装篇

    安装虚拟机redhat7u4-64 镜像文件在http://www.linuxfly.org/post/659 更换yum 参考https://blog.csdn.net/xiaoyiaoyou/ar ...

  8. 微软开源自动机器学习工具NNI安装与使用

    微软开源自动机器学习工具 – NNI安装与使用   在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到最佳模型的过程了.对于初学者来说,常常是无从下手.即使是对于有经验的算法工程师 ...

  9. 记录一次Python下Tensorflow安装过程,1.7带GPU加速版本

    最近由于论文需要,急需搭建Tensorflow环境,16年底当时Tensorflow版本号还没有过1,我曾按照手册搭建过CPU版本.目前,1.7算是比较新的版本了(也可以从源码编译1.8版本的Tens ...

随机推荐

  1. angularjs下拉框实现渲染html

    angualrjs处于安全的考虑,插值 指令会对相应字符串进行过滤,避免出现html攻击.但是在一些时候,我们需要渲染html,比如实现一个分级的下拉框,代码如下: <body ng-app=& ...

  2. cal日历工具的用法

    cal的基本语法:$ cal [month] [year] 1.显示当前月的日历 $ cal 2.显示某年的日历 $ cal 2015 3.显示某年某月日历 $ cal 12 2015 =-=-=-= ...

  3. Hybrid App开发之jQuery操作DOM

    前言: 前面学习了JQuery的选择器,今天开始学习新的知识,JQuery操作DOM元素. 元素属性的访问与设置 attr(name) 获取元素属性 attr(name,value) 单个属性设置 a ...

  4. R语言重要数据集分析研究——需要整理分析阐明理念

    1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标 ...

  5. js传宗接代---继承

    前几天重温了一下js的继承,今天分享给大家: 一,类式继承. 所谓的类式继承就是:第二个类的原型prototype被赋予了第一个类的实例,如subcals.prototype=new supercls ...

  6. MVP架构

    一.介绍 MVP(Model View Presenter)架构是从著名的MVC(Model View Controller)架构演变而来的.对于在Android应用中开发就可以视为是MVC架构,布局 ...

  7. js验证是否是数字,支持正负数小数

    js验证是否是数字,支持正负数小数. function isShuzi(str){ //var regExp =/[0-9]$/;//不支持小数 var regExp =/^\-?[0-9]+(.[0 ...

  8. webdriver API中文文档

    1.1   下载selenium2.0的lib包 http://code.google.com/p/selenium/downloads/list 官方UserGuide:http://seleniu ...

  9. 如何利用keytool查看一个apk的签名

  10. Windows PowerShell 默认颜色

    屏幕背景:1,36,86 屏幕文字:238,237,240 弹出文字:0,128,128 弹出窗口背景:255,255,255