/*
题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */
#include<bits/stdc++.h>
#define ll long long
using namespace std;
/**************************欧拉函数模板*****************************/
//筛选法打欧拉函数表
#define Max 3000010
int euler[Max];
void Init(){
euler[]=;
for(int i=;i<Max;i++)
euler[i]=i;
for(int i=;i<Max;i++)
if(euler[i]==i)
for(int j=i;j<Max;j+=i)
euler[j]=euler[j]/i*(i-);//先进行除法是为了防止中间数据的溢出
}
/**************************欧拉函数模板*****************************/
int a,b;
int main(){
// freopen("in.txt","r",stdin);
Init();
while(scanf("%d%d",&a,&b)!=EOF){
ll cur=;
for(int i=a;i<=b;i++){
cur+=euler[i];
}
printf("%lld\n",cur);
}
return ;
}

The Euler function

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 224 Accepted Submission(s): 124
 
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 
Output
            Output the result of  (a)+ (a+1)+....+ (b)
 
Sample Input
3 100
 
Sample Output
3042
 
 
Source
2009 Multi-University Training Contest 1 - Host by TJU
 
Recommend
gaojie
 

The Euler function(线性筛欧拉函数)的更多相关文章

  1. 素数的线性筛 && 欧拉函数

    O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ...

  2. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  3. [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...

  4. BZOJ 2190 仪仗队(线性筛欧拉函数)

    简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...

  5. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  6. poj1248 (线性筛欧拉函数)(原根)

    强烈鸣谢wddwjlss 题目大意:给出一个奇素数,求出他的原根的个数,多组数据. 这里先介绍一些基本性质 阶 设\((a,m)=1\),满足\(a^r \equiv 1 \pmod m\)的最小正整 ...

  7. The Euler function(hdoj --2824-欧拉函数)

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. noip复习——线性筛(欧拉筛)

    整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...

  9. HDU5597/BestCoder Round #66 (div.2) GTW likes function 打表欧拉函数

    GTW likes function      Memory Limit: 131072/131072 K (Java/Others) 问题描述 现在给出下列两个定义: f(x)=f_{0}(x)=\ ...

随机推荐

  1. angular $compiler

    directive是如何被compiled HTML编译发生在三个阶段: 1.$compile遍历DOM节点匹配directives 如果compiler找到元素上的directive,directi ...

  2. javascript DOM事件总结

    1 <html> 2 <title>事件</title> 3 <meta charset="utf-8"/> 4 <body& ...

  3. C语言 printf 格式化输出函数

    用 法: int printf(const char *format,[argument]); format 参数输出的格式,定义格式为: %[flags][width][.perc] [F|N|h| ...

  4. uva11401

    题目大意:计算从1,2,3,...,n中选出3个不同的整数,使得以它们为边长可以构成三角形的个数. 思路:用一般的方法需要三重循环,时间复杂度为O(n^3),肯定超时,因此可用数学的方法对问题进行分析 ...

  5. JavaWeb(四)EL表达式

    前言 前面详细的说明了什么是JSP和它的一些元素,这篇给大家介绍一下的是EL表达式. 用EL表达式,能更好的使用JSP中的各种内置对象和作用域. 楼主作为大四狗马上要出去面试了,内心很紧张!!! 一. ...

  6. express简介

    Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Express 可以快速地搭建一个完整功能的网 ...

  7. 程序员网站开发时应该注意的SEO问题

    一.链接的统一性 搜索引擎排名最主要的因素就是网站内容和链接,假如网站内部链接不一致,在很大程度上直接影响着网站在搜索引擎中的排名.例如彩票专营店导航栏中的“首页”链接,程序员在开发时可能会有以下几种 ...

  8. Java面向对象 IO (四)

     Java面向对象  IO  (四) 知识概要:                 (1)打印流 (2)序列流 SequenceInputStream (3)ObjectInputStream与Ob ...

  9. Levenshtein Distance + LCS 算法计算两个字符串的相似度

    //LD最短编辑路径算法 public static int LevenshteinDistance(string source, string target) { int cell = source ...

  10. 学习笔记之CSS样式(选择器背景字体边框绝/相对、固定位置and分层流等)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...