/*
题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */
#include<bits/stdc++.h>
#define ll long long
using namespace std;
/**************************欧拉函数模板*****************************/
//筛选法打欧拉函数表
#define Max 3000010
int euler[Max];
void Init(){
euler[]=;
for(int i=;i<Max;i++)
euler[i]=i;
for(int i=;i<Max;i++)
if(euler[i]==i)
for(int j=i;j<Max;j+=i)
euler[j]=euler[j]/i*(i-);//先进行除法是为了防止中间数据的溢出
}
/**************************欧拉函数模板*****************************/
int a,b;
int main(){
// freopen("in.txt","r",stdin);
Init();
while(scanf("%d%d",&a,&b)!=EOF){
ll cur=;
for(int i=a;i<=b;i++){
cur+=euler[i];
}
printf("%lld\n",cur);
}
return ;
}

The Euler function

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 224 Accepted Submission(s): 124
 
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 
Output
            Output the result of  (a)+ (a+1)+....+ (b)
 
Sample Input
3 100
 
Sample Output
3042
 
 
Source
2009 Multi-University Training Contest 1 - Host by TJU
 
Recommend
gaojie
 

The Euler function(线性筛欧拉函数)的更多相关文章

  1. 素数的线性筛 && 欧拉函数

    O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ...

  2. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  3. [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...

  4. BZOJ 2190 仪仗队(线性筛欧拉函数)

    简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...

  5. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  6. poj1248 (线性筛欧拉函数)(原根)

    强烈鸣谢wddwjlss 题目大意:给出一个奇素数,求出他的原根的个数,多组数据. 这里先介绍一些基本性质 阶 设\((a,m)=1\),满足\(a^r \equiv 1 \pmod m\)的最小正整 ...

  7. The Euler function(hdoj --2824-欧拉函数)

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. noip复习——线性筛(欧拉筛)

    整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...

  9. HDU5597/BestCoder Round #66 (div.2) GTW likes function 打表欧拉函数

    GTW likes function      Memory Limit: 131072/131072 K (Java/Others) 问题描述 现在给出下列两个定义: f(x)=f_{0}(x)=\ ...

随机推荐

  1. 个人从源码理解JIT模式下angular编译AppModule的过程

    承接上文.笔者之前将一个angular项目的启动过程分为了两步: 创建平台得到 PlatformRef ,以及执行平台引用提供的方法编译根模块 AppModule .本文就将着眼于创建好的平台,从an ...

  2. kbhit()

    kbhit() 非阻塞的响应键盘输入时间   C++函数 功能和返回值:检查是否有键盘输入 ,有返回非0 ,无返回0 int khbit(void) 头文件: #include<conio.h& ...

  3. S2_OOP第三章

    第一章 多态 概念 多态是具有表现多种型生态的能力的特征,同一个实现接口,使用不同的实例而执行不同的操作 子类转换父类(向上转型) 用父类接受子类,向上转型 向上转型的规则: 讲一个父类的引用志向一个 ...

  4. Zabbix(一) : 简介以及Server端安装

    一.什么是Zabbix? zabbix由AlexeiVladishev首先开发,目前在维护的是Zabbix SIA.ZABBIX是一个企业级的开源分布式监控解决方案. zabbix为监控网络和服务器的 ...

  5. 详细分析apache httpd反向代理的用法

    html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,h ...

  6. jdk8与jdk9的共存

    以前安装JDK,需要手动配置环境变量.JDK8多了自动配置环境变量,所以可以不用手动配置. 如果我已经装了JDK8,还想再装一个JDK9,安装完,自动配置的环境变量会指向JDK9版本. 解决方法 删除 ...

  7. 闲聊DOS命令

    使用DOS命令进入指定文件夹打开文本文件: 回车确定 先进入F盘: 回车后输入:  F: 然后回车就进入了F盘,如下图: 然后比如我们要打开 F:\电脑桌面文件\hosts文件.txt文件,打开步骤如 ...

  8. Python自学笔记-filter()函数(来自廖雪峰的官网Python3)

    感觉廖雪峰的官网http://www.liaoxuefeng.com/里面的教程不错,所以学习一下,把需要复习的摘抄一下. 以下内容主要为了自己复习用,详细内容请登录廖雪峰的官网查看. Python内 ...

  9. python 多进程间交换信息与共享信息

    多线程调用函数,获取其返回值,个人总结了三种方法: 一.Queue(进程队列) 构造方法:multiprocessing.Queue([maxsize]) Queue.Queue类即是一个队列的同步实 ...

  10. 替代PhotoShop:GIMP图形编辑器的使用

    GIMP最早是linux环境下用于图形编辑的一款开源软件,目前的功能很已经很丰富,如果使用得当,在很多的图形编辑操作上完全可以替代收费的Photoshop(PS).目前GIMP已经发展成了多平台的开源 ...