Description

HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此, 他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同 的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只好求助睿智的你,来解 决这个问题。

Input

第一行:一个整数N,表示项链的长度。 第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。 第三行:一个整数M,表示HH询问的个数。 接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。

Output

M行,每行一个整数,依次表示询问对应的答案。

Sample Input

6
1 2 3 4 3 5
3
1 2
3 5
2 6

Sample Output

2
2
4

HINT

对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。

题解:

用last[i]记录上一个与i号贝壳相同的贝壳所在位置。对于一段区间[l,r],求出其中满足last[i]<l的i的个数,即为答案。

用线段树记录last为0~n-1的贝壳的个数,因为每加入一个贝壳,只会改变last[0~n-1]中的一个,所以可以用可持久化线段树维护

代码:

 var
i,j,k,n,m,cnt,xx,yy:longint;
pre,root:array[..]of longint;
last:array[..]of longint;
t:array[..,-..]of longint;
function qq(x,l,r:longint):longint;
var ll,rr:longint;
begin
if(t[x,]=l)and(t[x,]=r)then exit(t[x,]);
ll:=t[x,-]; rr:=t[x,-];
if r<=(t[x,]+t[x,])div then exit(qq(ll,l,r));
if l>(t[x,]+t[x,])div then exit(qq(rr,l,r));
exit(qq(ll,l,t[ll,])+qq(rr,t[rr,],r));
end;
procedure build(l,r,x:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin if l=x then t[k,]:=; exit; end;
inc(cnt); t[k,-]:=cnt; build(l,(l+r)div ,x);
inc(cnt); t[k,-]:=cnt; build(((l+r)div )+,r,x);
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
procedure newtree(l,r,x,y:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin t[k,]:=t[y,]; if l=x then inc(t[k,]); exit; end;
if x<=(l+r)div then
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(l,(l+r)div ,x,t[y,-]);
end else
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(((l+r)div )+,r,x,t[y,-]);
end;
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
begin
readln(n);
for i:= to n do
begin
read(j); pre[i]:=last[j]; last[j]:=i;
end;
root[]:=; cnt:=;
build(,n,pre[]);
for i:= to n do
begin
inc(cnt); root[i]:=cnt;
newtree(,n,pre[i],root[i-]);
end;
readln(m);
for i:= to m do
begin
readln(j,k);
if j= then xx:= else xx:=qq(root[j-],,j-);
if k= then yy:= else yy:=qq(root[k],,j-);
writeln(yy-xx);
end;
end.

BZOJ1878[SDOI2009]HH的项链的更多相关文章

  1. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  2. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  3. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  4. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

  5. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  6. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  7. [BZOJ1878] [SDOI2009] HH的项链 (树状数组)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  8. 【树状数组】Bzoj1878[SDOI2009] HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  9. [bzoj1878][SDOI2009][HH的项链] (莫队算法)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

随机推荐

  1. 记2016腾讯 TST 校招面试经历,电面、笔试写代码、技术面、hr面,共5轮

    (出处:http://www.cnblogs.com/linguanh/) 前序: 距离  2016 腾讯 TST 校招面试结束已经5天了,3月27日至今,目前还在等待消息.从投简历到两轮电面,再到被 ...

  2. javascript的变量作用域--对比js、php和c的for循环

    为什么要写这篇文章呢?主要是给自己提个醒,js的水很深,需要小心点儿才能趟过去,更何况自己不是专业人士,那就得更加小心了. 看下面的js代码: <!DOCTYPE html> <ht ...

  3. JavaScript: 零基础轻松学闭包

    本文面向初学者,大神轻喷. 闭包是什么? 初学javascript的人,都会接触到一个东西叫做闭包,听起来感觉很高大上的.网上也有各种五花八门的解释,其实我个人感觉,没必要用太理论化的观念来看待闭包. ...

  4. 【干货】用大白话聊聊JavaSE — ArrayList 深入剖析和Java基础知识详解(二)

    在上一节中,我们简单阐述了Java的一些基础知识,比如多态,接口的实现等. 然后,演示了ArrayList的几个基本方法. ArrayList是一个集合框架,它的底层其实就是一个数组,这一点,官方文档 ...

  5. golang 使用 iota

    iota是golang语言的常量计数器,只能在常量的表达式中使用. iota在const关键字出现时将被重置为0(const内部的第一行之前),const中每新增一行常量声明将使iota计数一次(io ...

  6. Elasticsearch —— bulk批量导入数据

    在使用Elasticsearch的时候,一定会遇到这种场景--希望批量的导入数据,而不是一条一条的手动导入.那么此时,就一定会需要bulk命令! 更多内容参考我整理的Elk教程 bulk批量导入 批量 ...

  7. 【无私分享:ASP.NET CORE 项目实战(第十二章)】添加对SqlServer、MySql、Oracle的支持

    目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 增加对多数据库的支持,并不是意味着同时对多种数据库操作,当然,后面,我们会尝试同时对多种数据库操作,这可能需要多个上下文,暂且 ...

  8. C#开发微信门户及应用(13)-使用地理位置扩展相关应用

    本文继续上一篇<C#开发微信门户及应用(12)-使用语音处理>,继续介绍微信的相关应用.我们知道,地理位置信息可以用来做很多相关的应用,除了我们可以知道用户所在的位置,还可以关联出一些地理 ...

  9. ORACLE实现自定义序列号生成

    实际工作中,难免会遇到序列号生成问题,下面就是一个简单的序列号生成函数 (1)创建自定义序列号配置表如下: --自定义序列 create table S_AUTOCODE ( pk1 ) primar ...

  10. mysql 用户管理和权限设置

    用户管理 mysql>use mysql; 查看 mysql> select host,user,password from user ; 创建 mysql> create user ...