BZOJ1878[SDOI2009]HH的项链
Description
Input
Output
Sample Input
1 2 3 4 3 5
3
1 2
3 5
2 6
Sample Output
2
4
HINT
对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。
题解:
用last[i]记录上一个与i号贝壳相同的贝壳所在位置。对于一段区间[l,r],求出其中满足last[i]<l的i的个数,即为答案。
用线段树记录last为0~n-1的贝壳的个数,因为每加入一个贝壳,只会改变last[0~n-1]中的一个,所以可以用可持久化线段树维护。
代码:
var
i,j,k,n,m,cnt,xx,yy:longint;
pre,root:array[..]of longint;
last:array[..]of longint;
t:array[..,-..]of longint;
function qq(x,l,r:longint):longint;
var ll,rr:longint;
begin
if(t[x,]=l)and(t[x,]=r)then exit(t[x,]);
ll:=t[x,-]; rr:=t[x,-];
if r<=(t[x,]+t[x,])div then exit(qq(ll,l,r));
if l>(t[x,]+t[x,])div then exit(qq(rr,l,r));
exit(qq(ll,l,t[ll,])+qq(rr,t[rr,],r));
end;
procedure build(l,r,x:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin if l=x then t[k,]:=; exit; end;
inc(cnt); t[k,-]:=cnt; build(l,(l+r)div ,x);
inc(cnt); t[k,-]:=cnt; build(((l+r)div )+,r,x);
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
procedure newtree(l,r,x,y:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin t[k,]:=t[y,]; if l=x then inc(t[k,]); exit; end;
if x<=(l+r)div then
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(l,(l+r)div ,x,t[y,-]);
end else
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(((l+r)div )+,r,x,t[y,-]);
end;
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
begin
readln(n);
for i:= to n do
begin
read(j); pre[i]:=last[j]; last[j]:=i;
end;
root[]:=; cnt:=;
build(,n,pre[]);
for i:= to n do
begin
inc(cnt); root[i]:=cnt;
newtree(,n,pre[i],root[i-]);
end;
readln(m);
for i:= to m do
begin
readln(j,k);
if j= then xx:= else xx:=qq(root[j-],,j-);
if k= then yy:= else yy:=qq(root[k],,j-);
writeln(yy-xx);
end;
end.
BZOJ1878[SDOI2009]HH的项链的更多相关文章
- BZOJ1878 SDOI2009 HH的项链 【莫队】
BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...
- bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链
http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...
- BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)
1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...
- [bzoj1878][SDOI2009]HH的项链_莫队
HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...
- [bzoj1878][SDOI2009]HH的项链_树状数组
HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...
- BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]
BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...
- [BZOJ1878] [SDOI2009] HH的项链 (树状数组)
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
- 【树状数组】Bzoj1878[SDOI2009] HH的项链
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
- [bzoj1878][SDOI2009][HH的项链] (莫队算法)
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
随机推荐
- 设计模式(十二):通过ATM取款机来认识“状态模式”(State Pattern)
说到状态模式,如果你看过之前发布的重构系列的文章中的<代码重构(六):代码重构完整案例>这篇博客的话,那么你应该对“状态模式”并不陌生,因为我们之前使用到了状态模式进行重构.上一篇博客我们 ...
- JQuery 加载 CSS、JS 文件
JS 方式加载 CSS.JS 文件: //加载 css 文件 function includeCss(filename) { var head = document.getElementsByTagN ...
- 《PDF.NE数据框架常见问题及解决方案-初》
<PDF.NE数据框架常见问题及解决方案-初> 1.新增数据库后,获取标识列的值: 解决方案: PDF.NET数据框架,已经为我们考略了很多,因为用PDF.NET进行数据的添加操作时 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 【Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之RAC 工作原理和相关组件(三)
RAC 工作原理和相关组件(三) 概述:写下本文档的初衷和动力,来源于上篇的<oracle基本操作手册>.oracle基本操作手册是作者研一假期对oracle基础知识学习的汇总.然后形成体 ...
- AngularJs学习笔记(制作留言板)
原文地址:http://www.jmingzi.cn/?post=13 初学Anjularjs两天了,一边学一边写的留言板,只有一级回复嵌套.演示地址 这里总结一下学习的过程和笔记.另外,看看这篇文章 ...
- SSH框架和Redis的整合(1)
一个已有的Struts+Spring+Hibernate项目,以前使用MySQL数据库,现在想把Redis也整合进去. 1. 相关Jar文件 下载并导入以下3个Jar文件: commons-pool2 ...
- 使用java泛型设计通用方法
泛型是Java SE 1.5的新特性, 泛型的本质是参数化类型, 也就是说所操作的数据类型被指定为一个参数. 因此我们可以利用泛型和反射来设计一些通用方法. 现在有2张表, 一张user表和一张stu ...
- C++_系列自学课程_第_11_课_类型转换_《C++ Primer 第四版》
上次说了关于表达式的一些内容,说到还有一些关于数据类型转换的内容,今天我们接着八一八C++中的数据类型转换. 一.隐式类型转换 在表达式中,有些操作符可以对多种类型的操作数进行操作, 例如 + 操作符 ...
- volatile
Volatile修饰的成员变量在每次被线程访问时,都强迫从共享内存中重读该成员变量的值.而且,当成员变量发生变化时,强迫线程将变化值回写到共享内存.这样在任何时刻,两个不同的线程总是看到某个成员变量的 ...