Description

HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此, 他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同 的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只好求助睿智的你,来解 决这个问题。

Input

第一行:一个整数N,表示项链的长度。 第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。 第三行:一个整数M,表示HH询问的个数。 接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。

Output

M行,每行一个整数,依次表示询问对应的答案。

Sample Input

6
1 2 3 4 3 5
3
1 2
3 5
2 6

Sample Output

2
2
4

HINT

对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。

题解:

用last[i]记录上一个与i号贝壳相同的贝壳所在位置。对于一段区间[l,r],求出其中满足last[i]<l的i的个数,即为答案。

用线段树记录last为0~n-1的贝壳的个数,因为每加入一个贝壳,只会改变last[0~n-1]中的一个,所以可以用可持久化线段树维护

代码:

 var
i,j,k,n,m,cnt,xx,yy:longint;
pre,root:array[..]of longint;
last:array[..]of longint;
t:array[..,-..]of longint;
function qq(x,l,r:longint):longint;
var ll,rr:longint;
begin
if(t[x,]=l)and(t[x,]=r)then exit(t[x,]);
ll:=t[x,-]; rr:=t[x,-];
if r<=(t[x,]+t[x,])div then exit(qq(ll,l,r));
if l>(t[x,]+t[x,])div then exit(qq(rr,l,r));
exit(qq(ll,l,t[ll,])+qq(rr,t[rr,],r));
end;
procedure build(l,r,x:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin if l=x then t[k,]:=; exit; end;
inc(cnt); t[k,-]:=cnt; build(l,(l+r)div ,x);
inc(cnt); t[k,-]:=cnt; build(((l+r)div )+,r,x);
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
procedure newtree(l,r,x,y:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin t[k,]:=t[y,]; if l=x then inc(t[k,]); exit; end;
if x<=(l+r)div then
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(l,(l+r)div ,x,t[y,-]);
end else
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(((l+r)div )+,r,x,t[y,-]);
end;
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
begin
readln(n);
for i:= to n do
begin
read(j); pre[i]:=last[j]; last[j]:=i;
end;
root[]:=; cnt:=;
build(,n,pre[]);
for i:= to n do
begin
inc(cnt); root[i]:=cnt;
newtree(,n,pre[i],root[i-]);
end;
readln(m);
for i:= to m do
begin
readln(j,k);
if j= then xx:= else xx:=qq(root[j-],,j-);
if k= then yy:= else yy:=qq(root[k],,j-);
writeln(yy-xx);
end;
end.

BZOJ1878[SDOI2009]HH的项链的更多相关文章

  1. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  2. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  3. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  4. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

  5. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  6. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  7. [BZOJ1878] [SDOI2009] HH的项链 (树状数组)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  8. 【树状数组】Bzoj1878[SDOI2009] HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  9. [bzoj1878][SDOI2009][HH的项链] (莫队算法)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

随机推荐

  1. 计算机程序的思维逻辑 (48) - 剖析ArrayDeque

    前面我们介绍了队列Queue的两个实现类LinkedList和PriorityQueue,LinkedList还实现了双端队列接口Deque,Java容器类中还有一个双端队列的实现类ArrayDequ ...

  2. c 线程(平行世界)

    我们已经知道如何使用进程来做一些事情了,然而 它并不是在什么地方都是最适合的. 我们看看进程的缺点是什么: 线程隆重登场 1. 如何创建线程 创建线程可以使用多种线程库,在此我们使用最流行的一种:PO ...

  3. Oracle数据库异机升级

    环境: A机:RHEL5.5 + Oracle 10.2.0.4 B机:RHEL5.5 需求: A机10.2.0.4数据库,在B机升级到11.2.0.4,应用最新PSU补丁程序. 目录: 一. 确认是 ...

  4. MVP社区巡讲-云端基础架构:12月5日北京站 12月12日上海站

    紧跟当今的技术发展趋势还远远不够,我们要引领变革!加入本地技术专家社区,获取真实案例.实况培训演示以及探讨新一代解决方案.在此活动中,您将: 了解如何运用开源(OSS)技术.Microsoft 技术及 ...

  5. [AngularJS] AngularJS系列(3) 中级篇之表单验证

    目录 基本验证 验证插件messages 自定义验证 基本验证 <form name="form" novalidate ng-app> <span>{{f ...

  6. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  7. WPF's Style BasedOn

    <Style x:Key="BasedStyle" BasedOn="{x:Null}" TargetType="{x:Type Control ...

  8. 十五天精通WCF——第一天 三种Binding让你KO80%的业务

    转眼wcf技术已经出现很多年了,也在.net界混的风生水起,同时.net也是一个高度封装的框架,作为在wcf食物链最顶端的我们所能做的任务已经简单的不能再简单了, 再简单的话马路上的大妈也能写wcf了 ...

  9. HTML5笔记1——HTML5的发展史及标签的改变

    记得第一次接触HTML5还是在<联信永益>实习那会儿(2011),当时一个项目技术选型的时候面临两种选择,分别是Silverlight和HTML5,那是用的最新的IE浏览器版本还是IE9, ...

  10. [连载]《C#通讯(串口和网络)框架的设计与实现》- 12.二次开发及应用

    目       录 第十二章     二次开发及应用... 2 12.1        项目配制... 3 12.2        引用相关组件... 4 12.3        构建主程序... 5 ...