/*
*Kruskal算法求MST
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
using namespace std; const int MAXN = 110; //最大点数
const int MAXM = 10000; //最大边数
int F[MAXN]; //并查集使用 struct Edge {
int u, v, w;
}edge[MAXM]; //存储边的信息,包括起点/终点/权值 int tol = 0; //记录边数 void addedge(int u, int v, int w) {
edge[tol].u = u;
edge[tol].v = v;
edge[tol++].w = w;
} bool cmp(Edge a, Edge b) { //排序函数,将边按照权值从小到大排序
return a.w < b.w;
} int find(int x) {
if (F[x] == -1)
return x;
else
return F[x] = find(F[x]);
} int Kruskal(int n) { //传入点数,返回最小生成树的权值,如果不连通返回-1
memset(F, -1, sizeof(F));
sort(edge, edge+tol, cmp);
int cnt = 0; //计算加入的边数
int ans = 0;
for (int i = 0; i<tol; i++) {
int u = edge[i].u;
int v = edge[i].v;
int w = edge[i].w;
int t1 = find(u);
int t2 = find(v);
if (t1 != t2) {
ans += w;
F[t1] = t2;
cnt ++ ;
}
if (cnt == n-1)
break;
}
if (cnt < n-1)
return -1;
else
return ans;
} int main() {
int t;
cin >> t;
while (t --) {
tol = 0;
memset(edge, 0, sizeof(edge));
int n, m;
cin >> n >> m;
while (m --) {
int x, y, w;
cin >> x >> y>> w;
addedge(x, y, w);
}
int res = Kruskal(tol);
if (res == -1)
cout << "Not Unique!"<< endl;
else
cout << res << endl; }
return 0;
}

克鲁斯卡尔(Kruskal)算法求最小生成树的更多相关文章

  1. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  2. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  3. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  4. 图解最小生成树 - 克鲁斯卡尔(Kruskal)算法

    我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树 ...

  5. kruskal算法求最小生成树(jungle roads的kruskal解法)

    注意: 注意数组越界问题(提交出现runtimeError代表数组越界) 刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越 ...

  6. 克鲁斯卡尔(Kruskal)算法

    # include <stdio.h> # define MAX_VERTEXES //最大顶点数 # define MAXEDGE //边集数组最大值 # define INFINITY ...

  7. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  8. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  9. Kruskal算法求最小生成树

    Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...

随机推荐

  1. xcode编译报错unknown error -1=ffffffffffffffff Command /bin/sh failed with exit code 1

    升级完xcode9.1之后,编译项目出现如下错误: CI今日构建时报出如下错误: /Users/xxx/Library/Developer/Xcode/DerivedData/Snowball-ebl ...

  2. cat/tac/more/less 命令详解

    cat:(http://www.cnblogs.com/peida/archive/2012/10/30/2746968.html) *cat主要有三大功能:1.一次显示整个文件:cat filena ...

  3. jmeter通过org.sqlite.JDBC驱动连接db数据库

    最近遇到个项目,默认业务库为内置db数据库,在性能脚本编辑过程中要通过正则表达式提取器(关联)获取对应的id号,通过该id号到db数据库中查找对应的数据源name字段内容,为下一个post请求做par ...

  4. 视频云SDK iOS持续集成项目实践

    1. 前言 2016年, 我们维护的 iOS推流播放融合SDK KSYLive_iOS 在github上发布了40多个版本, 平均两周发布一个新版本, 经历了最初痛苦的全手动版本构建和维护, 到后来慢 ...

  5. 高仿二次元网易GACHA

    高仿二次元网易GACHA,所有接口均通过Charles抓取而来,图片资源通过 https://github.com/yuedong56/Assets.carTool 工具提取. 详情见github地址 ...

  6. 二维码utils希望对大家有帮助

    package cn.itcast.utils;   import java.io.File; import java.nio.file.Path; import java.util.HashMap; ...

  7. Oracle绑定变量优缺点

    参考:http://f.dataguru.cn/thread-208881-1-1.html 参考:http://blog.sina.com.cn/s/blog_4d9ece9a0100caw8.ht ...

  8. fiddler基本介绍

    1.Fiddler如何捕获HTTPS会话 点击Tools->Teleik Fiddler Option,勾选如下选项 点击"Yes" 后,就设置好了 2.fiddler的基本 ...

  9. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

  10. 再见乱码:5分钟读懂MySQL字符集设置

    一.内容概述 在MySQL的使用过程中,了解字符集.字符序的概念,以及不同设置对数据存储.比较的影响非常重要.不少同学在日常工作中遇到的"乱码"问题,很有可能就是因为对字符集与字符 ...