[APIO2010]特别行动队
题目描述
你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如(i, i + 1, ..., i + k)(i,i+1,...,i+k)的序列。 编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内 士兵初始战斗力之和,即 x = x_i + x_{i+1} + ... + x_{i+k}x=xi+xi+1+...+xi+k。
通过长期的观察,你总结出一支特别行动队的初始战斗力 x 将按如下经验公 式修正为 x':x'= ax^2+bx+cx′:x′=ax2+bx+c,其中 a, b, c 是已知的系数(a < 0)。 作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后 战斗力之和最大。试求出这个最大和。
例如,你有 4 名士兵, x_1 = 2, x_2 = 2, x_3 = 3, x_4 = 4x1=2,x2=2,x3=3,x4=4。经验公式中的参数为 a = –1, b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵 1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分 别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它 方案能使修正后的战斗力和更大。
网上对斜率优化的解释太玄乎,我看不懂,所以用自己的方法来解释一下斜率优化:
所谓斜率优化,优化的是DP【i】=max(min)(C(i)+C(j)+K(j)*S(i))的dp方程
其中C(i)是只跟i有关的常数,c(j)是和j有关的常数,K(j)和S(i)是分别与ij有关的函数。
整理 得 DP【i】-C(i)=K(j)*S(i)+C(j),我们只要求K(j)*S(i)+C(j)的最值即可。
我们发现每一个J代表一条直线,其自变量为S(i),且S(i)单调递增。
那么我们可以动态的维护一个直线的集合,其K依次递增,C依次递减。(当存在一条直线的K,C都比另一条小时,那它就永远不会成为最优解)。
又因为K依次递增,C依次递减,而且S(i)单调递增,那么一条直线被他后面的直线追上后,就一直比被其追上的直线小了。(两线一交点)。
那么我们就可以这样来维护一个单调队列来优化DP了吗?
答案是否定的。
我们发现了反例。
我们考虑三条直线,y1=10,y2=X+9,y3=100x+1.
显然这三条直线在单调队列中是合法的。
但我们发现 y1和y2的交点在X=1处,y1与y3的交点却在X=0.09处。
按照我们刚才的做法,当X=0.5时,我们还是误以为y1是当前的最优直线,但事实上是y3最优。
所以我们在队尾加入直线时,要判当前要加的直线与前一条直线与前一条直线的前一条直线的交点哪一个在前,如果当前直线的交点在前的话,那就可以将队尾的直线弹出了,因为它已经没有机会成为最优解了。
#include<bits/stdc++.h>
#define B(x) (1ll*a*sum[x]*sum[x]+dp[x]-b*sum[x])//就是题解里的C(j),直线的截距,y=kx+b中的b
#define K(x) (-2ll*a*sum[x])//直线的斜率
#define N 1070001
#define LL long long
#define sight(C) (C<='9'&&C>='0')
using namespace std;
LL sum[N],q[N],n,m,x,head,tail,dp[N],a,b,c;
LL check(int x,int y) {//判断当前直线与i组合的DP值
return dp[y]+a*(sum[x]-sum[y])*(sum[x]-sum[y])+b*(sum[x]-sum[y])+c;
} char C;int B;
double jiao(int x,int y){ //求直线的交点
return 1.0*(B(x)-B(y))/(K(x)-K(y));
}
LL read(LL &x) {
C=getchar(); B=;
for(;!sight(C);C=getchar()) if (C=='-') B=-;
for(x=;sight(C);C=getchar()) x=x*+C-'';
x*=B;
}
int main () {
read(n);
read(a); read(b); read(c);
for (int i=;i<=n;i++)
read(x),sum[i]=sum[i-]+x;
head=tail=;
q[tail++]=;
for (int i=;i<=n;i++) {
while (head+<tail && check(i,q[head])<=check(i,q[head+])) head++;//当前解被超过,将其出队
dp[i]=check(i,q[head]);
while (head+<tail && jiao(q[tail-],i)<=jiao(q[tail-],i)) tail--;//i与q【tail-1】相比,i的交点在前,所以将q【tail-1】删除
q[tail++]=i;
}
printf("%lld\n",dp[n]);
return ;
}
[APIO2010]特别行动队的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- P3628 [APIO2010]特别行动队(斜率优化dp)
P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...
- [luogu P3628] [APIO2010]特别行动队
[luogu P3628] [APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特 ...
- 【bzoj1911】[Apio2010]特别行动队
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4048 Solved: 1913[Submit][Statu ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
随机推荐
- ThinkPHP 5 中AJAX跨域请求头设置方法
最近用thinkphp做项目,在测试环境时,存在接口的测试问题.在tp官网也没能找到相关的解决方法.自已看了一下源码,有如下的解决方案. 在项目目录下面,创建common/behavior/CronR ...
- [安全]服务器安全之 PHP权限目录
1.为每个主机配置增加一个 fastcgi_param PHP_VALUE "open_basedir=$document_root:/tmp/"; 或是直接把这句话放到fa ...
- SEO中TDK写法的意思以及注意事项
在SEO中,所谓的TDK其实就是title.description.keywords这三个标签,这三个标签在网站的优化过程中,至关重要所以今天童童来和大家分享下,如何去写好TDK标签! 1.title ...
- include、include_once、require、require_once其区别
1.include: 载入文件.未找到文件,则产生E_WARNING 级别的警告错误,脚本继续运行. 2.include_once: 与include 语句作用相同,区别只是如果该文件已经被包含过,则 ...
- tyvj4877 组合数
1.组合数 (zero.cpp/c/pas) 时间限制:1s 内存限制:256MB [问题描述] 从m个不同元素中,任取n(n≤m)个元素并成一组,叫做从m个不同元素中取出n个元素的一个组合:从m个不 ...
- 初识java这个小姑娘(三)
说烂了的面向对象 我要说的面向对象,其实是一个我自己都觉的有点恶心的东西. 它是java语言入门如此初级的一个概念.作为一个老鸟,你可以吐口水给我,我可以把它们擦干,但作为总结还得说一说. 因为对于一 ...
- day8、 显示Linux路由表、各列信息
要用到的命令是 route route 命令 显示和设置Linux路由表 -A:设置地址类型: -C:打印将Linux核心的路由缓存: -v:详细信息模式: -n:不执行DNS反向查找,直接显示 ...
- java的热部署和热加载
ps:热部署和热加载其实是两个类似但不同的概念,之前理解不深,so,这篇文章重构了下. 一.热部署与热加载 在应用运行的时升级软件,无需重新启动的方式有两种,热部署和热加载. 对于Java应用程序来说 ...
- Android笔记二十四.Android基于回调的事件处理机制
假设说事件监听机制是一种托付式的事件处理,那么回调机制则与之相反,对于基于回调的事件处理模型来说,事件源和事件监听器是统一的,或者说事件监听器全然消失了,当用户在GUI控件上激发某个事件时,控 ...
- JSP具体篇——response对象
response对象 response对象用于响应client请求,向客户输出信息. 他封装了JSP产生的响应,并发送到client以响应client请求. 1.重定向网页 使用response对象的 ...