17082 两个有序数序列中找第k小(优先做)

时间限制:1000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC;VC

Description

已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。 此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。

输入格式

第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。

输出格式

序列X和Y的第k小的数。

输入样例

5 6 7
1 8 12 12 21
4 12 20 22 26 31

输出样例

20

提示

假设:X序列为X[xBeg...xEnd],而Y序列为Y[yBeg...yEnd]。

将序列X和Y都均分2段,即取X序列中间位置为 xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。 1. 当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg...xMid]所有元素一定在Y[yMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,
故以后没有必要搜索 Y[yMid...yEnd]这些元素,可弃Y后半段数据。
此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,
故以后没有必要搜索 X[xBeg...xMid]这些元素,可弃X前半段数据。
此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。 2. 当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg...yMid]的所有元素一定在X[xMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,
故以后没有必要搜索 X[xMid...xEnd]这些元素,可弃X后半段数据。
此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,
故以后没有必要搜索 Y[yBeg...yMid]这些元素,可弃Y前半段数据。
此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。 递归的边界,如何来写?
1) if (xBeg > xEnd) return Y[yBeg + k - 1]; //X序列为空时,直接返回Y序列的第k小元素。
2) if (yBeg > yEnd) return X[xBeg + k - 1]; //Y序列为空时,直接返回X序列的第k小元素。 效率分析: T(m,n)表示对长度为m的有序的X序列和长度为n的有序的Y序列,搜索第k小元素的复杂度。
T(m,n)=1 m=0或n=0
T(m,n) <= max{T(m/2,n), T(m,n/2)} + O(1) 则T(m,n) = O(max{logm, logn}) 我的代码实现
 #include<stdio.h>
#define N 100005
int X[N], Y[N];
void findMinK(int xBeg,int xEnd,int yBeg,int yEnd,int k){
int xMid,yMid,halfLen;
xMid=(xBeg+xEnd+)/;
yMid=(yBeg+yEnd+)/;
halfLen=xMid-xBeg+yMid-yBeg+;
if(X[xMid]<Y[yMid]) {
if(k<halfLen)yEnd=yMid-;
else{
k-=(xMid-xBeg+);
xBeg=xMid+;
}
}
if(X[xMid]>=Y[yMid]) {
if(k<halfLen)xEnd=xMid-;
else{
k-=(yMid-yBeg+);
yBeg=yMid+;
}
}
if (xBeg > xEnd) {printf("%d",Y[yBeg + k - ]);return;} //X序列为空时,直接返回Y序列的第k小元素。
if (yBeg > yEnd) {printf("%d",X[xBeg + k - ]);return;} //Y序列为空时,直接返回X序列的第k小元素。
findMinK(xBeg,xEnd,yBeg,yEnd,k);
} int min(int a,int b){
if(a<b)return a;
else return b;
} int max(int a,int b){
if(a>b)return a;
else return b;
} int main(){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++){
scanf("%d",&X[i]);
}
for(int i=;i<=m;i++){
scanf("%d",&Y[i]);
}
if(k==)printf("%d",min(X[],Y[]));
else if(k==n+m)printf("%d",max(X[n],Y[m]));
else findMinK(,n,,m,k);
return ;
}

 

17082 两个有序数序列中找第k小(优先做)的更多相关文章

  1. 17082 两个有序数序列中找第k小

    17082 两个有序数序列中找第k小 时间限制:1000MS  内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题   语言: 无限制 Description 已知两个已经排好序(非减 ...

  2. 17082 两个有序数序列中找第k小(优先做) O(logn)

    17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 已 ...

  3. 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...

  4. 【算法剖析】寻找两个已序数组中的第k大元素

    1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...

  5. 在线性级别时间内找出无序序列中的第k个元素

    在一个无序序列中找出第k个元素,对于k很小或者很大时可以采取特殊的方法,比如用堆排序来实现 .但是对于与序列长度N成正比的k来说,就不是一件容易的事了,可能最容易想到的就是先将无序序列排序再遍历即可找 ...

  6. 两个有序数列找第k小

    给定一个数组,数组中的数据无序,在一个数组中找出其第k个最小的数,例如对于数组x,x = {3,2,1,4,5,6},则其第2个最小的数为2  两个有序数组 找第k小 * 方案一 合并遍历 * 二:游 ...

  7. [LeetCode] Find K-th Smallest Pair Distance 找第K小的数对儿距离

    Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...

  8. 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大

    思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...

  9. [LeetCode] 719. Find K-th Smallest Pair Distance 找第K小的数对儿距离

    Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...

随机推荐

  1. Python返回Json格式定义的例子

    { "code": 0, // code为0表示成功,否则为1 "message": null, "data": { "syscp ...

  2. 【Java入门提高篇】Day1 抽象类

    基础部分内容差不多讲解完了,今天开始进入Java提高篇部分,这部分内容会比之前的内容复杂很多,希望大家做好心理准备,看不懂的部分可以多看两遍,仍不理解的部分那一定是我讲的不够生动,记得留言提醒我. 好 ...

  3. boot之mybatis

    特别注意,此种方法和starter不兼容,我用了两个方式混蛋,发现跑不起来! spring: datasource: driver-class-name: com.mysql.cj.jdbc.Driv ...

  4. 源码剖析Django REST framework的请求生命周期

    学习Django的时候知道,在Django请求的生命周期中,请求经过WSGI和中间件到达路由,不管是FBV还是CBV都会先执行View视图函数中的dispatch方法 REST framework是基 ...

  5. China Azure中部署Kubernetes(K8S)集群

    目前China Azure还不支持容器服务(ACS),使用名称"az acs create --orchestrator-type Kubernetes -g zymtest -n kube ...

  6. GItCandy版本库搬迁步骤

    1.编译GitCandy,源码地址http://git.newlifex.com/NewLife/GitCandy 2.发布网站到文件夹 3.git网站停止运行 4.拷贝发布的网站到服务器目录&quo ...

  7. 自学python笔记(一)

    一   简介:Python是著名的"龟叔"Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言.其他的就不说了..... python是 ...

  8. azure上连续部署web

    连续部署web   连续部署web,可以在第一次部署完web应用后,方便修改和自动提交代码部署新版本的web应用.其中自动提交使用github中的webhook,使代码在master上提交修改后可以自 ...

  9. iOS APP上架被拒重新提交审核教程

    iOS APP审核比较严格,难免会出现被拒绝的情况,需要根据苹果反馈的问题修改后重新打包上传审核! 1.登录itunesconnect.https://itunesconnect.apple.com进 ...

  10. 认识 var、let、const

    我们通过声明.初始化.值的可变性.作用域.变量提升以及在工作中如何使用等多个方面来详细了解var.let.const等关键字功能与特点. 声明 var,let:可以先声明,后赋值(初始化),默认值是 ...