17082 两个有序数序列中找第k小(优先做)

时间限制:1000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC;VC

Description

已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。 此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。

输入格式

第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。

输出格式

序列X和Y的第k小的数。

输入样例

5 6 7
1 8 12 12 21
4 12 20 22 26 31

输出样例

20

提示

假设:X序列为X[xBeg...xEnd],而Y序列为Y[yBeg...yEnd]。

将序列X和Y都均分2段,即取X序列中间位置为 xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。 1. 当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg...xMid]所有元素一定在Y[yMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,
故以后没有必要搜索 Y[yMid...yEnd]这些元素,可弃Y后半段数据。
此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,
故以后没有必要搜索 X[xBeg...xMid]这些元素,可弃X前半段数据。
此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。 2. 当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg...yMid]的所有元素一定在X[xMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,
故以后没有必要搜索 X[xMid...xEnd]这些元素,可弃X后半段数据。
此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,
故以后没有必要搜索 Y[yBeg...yMid]这些元素,可弃Y前半段数据。
此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。 递归的边界,如何来写?
1) if (xBeg > xEnd) return Y[yBeg + k - 1]; //X序列为空时,直接返回Y序列的第k小元素。
2) if (yBeg > yEnd) return X[xBeg + k - 1]; //Y序列为空时,直接返回X序列的第k小元素。 效率分析: T(m,n)表示对长度为m的有序的X序列和长度为n的有序的Y序列,搜索第k小元素的复杂度。
T(m,n)=1 m=0或n=0
T(m,n) <= max{T(m/2,n), T(m,n/2)} + O(1) 则T(m,n) = O(max{logm, logn}) 我的代码实现
 #include<stdio.h>
#define N 100005
int X[N], Y[N];
void findMinK(int xBeg,int xEnd,int yBeg,int yEnd,int k){
int xMid,yMid,halfLen;
xMid=(xBeg+xEnd+)/;
yMid=(yBeg+yEnd+)/;
halfLen=xMid-xBeg+yMid-yBeg+;
if(X[xMid]<Y[yMid]) {
if(k<halfLen)yEnd=yMid-;
else{
k-=(xMid-xBeg+);
xBeg=xMid+;
}
}
if(X[xMid]>=Y[yMid]) {
if(k<halfLen)xEnd=xMid-;
else{
k-=(yMid-yBeg+);
yBeg=yMid+;
}
}
if (xBeg > xEnd) {printf("%d",Y[yBeg + k - ]);return;} //X序列为空时,直接返回Y序列的第k小元素。
if (yBeg > yEnd) {printf("%d",X[xBeg + k - ]);return;} //Y序列为空时,直接返回X序列的第k小元素。
findMinK(xBeg,xEnd,yBeg,yEnd,k);
} int min(int a,int b){
if(a<b)return a;
else return b;
} int max(int a,int b){
if(a>b)return a;
else return b;
} int main(){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++){
scanf("%d",&X[i]);
}
for(int i=;i<=m;i++){
scanf("%d",&Y[i]);
}
if(k==)printf("%d",min(X[],Y[]));
else if(k==n+m)printf("%d",max(X[n],Y[m]));
else findMinK(,n,,m,k);
return ;
}

 

17082 两个有序数序列中找第k小(优先做)的更多相关文章

  1. 17082 两个有序数序列中找第k小

    17082 两个有序数序列中找第k小 时间限制:1000MS  内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题   语言: 无限制 Description 已知两个已经排好序(非减 ...

  2. 17082 两个有序数序列中找第k小(优先做) O(logn)

    17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 已 ...

  3. 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...

  4. 【算法剖析】寻找两个已序数组中的第k大元素

    1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...

  5. 在线性级别时间内找出无序序列中的第k个元素

    在一个无序序列中找出第k个元素,对于k很小或者很大时可以采取特殊的方法,比如用堆排序来实现 .但是对于与序列长度N成正比的k来说,就不是一件容易的事了,可能最容易想到的就是先将无序序列排序再遍历即可找 ...

  6. 两个有序数列找第k小

    给定一个数组,数组中的数据无序,在一个数组中找出其第k个最小的数,例如对于数组x,x = {3,2,1,4,5,6},则其第2个最小的数为2  两个有序数组 找第k小 * 方案一 合并遍历 * 二:游 ...

  7. [LeetCode] Find K-th Smallest Pair Distance 找第K小的数对儿距离

    Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...

  8. 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大

    思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...

  9. [LeetCode] 719. Find K-th Smallest Pair Distance 找第K小的数对儿距离

    Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...

随机推荐

  1. 前端面试题(4)iframe有哪些优点?iframe缺点是什么?

    优点: iframe能够原封不动的把嵌入的网页展现出来. 如果有多个网页引用iframe,那么你只需要修改iframe的内容,就可以实现调用的每一个页面内容的更改,方便快捷. 网页如果为了统一风格,头 ...

  2. 私人网盘系统2.0—全部升级为layUI+PHP(持续更新中)shang

    网盘系统2.0   上周,我做了第一版的“私人网盘系统”,http://www.cnblogs.com/sunlizheng/p/7822036.html 没看过的朋友可以去看一下,这周在家升级做了第 ...

  3. Python之re模块(结合具体业务)

    1.判断数据库名是否合法 import re dbname = "test_" result = re.match("[a-zA-Z_0-9]{1,}$",db ...

  4. mysql使用use db出现夯住问题

    表的数目在15585个,在使用use db的时候出现夯住 从show processlist中看到一堆表在做排序,想看看这些表的表结构.使用use db之后夯住,没有办法查看. 当时没有想到怎么办,鉴 ...

  5. VMware下Linux网络配置局域网和外网访问

    要使用Linux系统很重要的一个操作就是使Linux系统能够访问互联网,只有Linux系统能够访问互联网才能够去下载很多自己所需要的资源,如果不能访问互联网那么使用Linux系统往往会卡在这一步,假设 ...

  6. 安卓Html标签,创意工具类

    之前开发项目中,遇到了在Textview中使用Html标签的情形,由于在代码中使用字符串,Android Studio上一堆的黄色警告,而且对于过时的Html.fromHtml,拿它一点办法也没有. ...

  7. websocket(三) 进阶!netty框架实现websocket达到高并发

    引言: 在前面两篇文章中,我们对原生websocket进行了了解,且用demo来简单的讲解了其用法.但是在实际项目中,那样的用法是不可取的,理由是tomcat对高并发的支持不怎么好,特别是tomcat ...

  8. Android UsageStatsService(应用使用统计服务)的学习与调研

    一. 简介 UsageStatsService是一个系统服务,其主要通过AMS等,来监测并记录各个应用的使用数据,如上次调用com.android.settings的时间等. UsageStatsSe ...

  9. 初学者易上手的SSH-整合

    许久没更新博客了! spring还有一章aop(面向切面),我就没讲述了,你们可以去看下代理模式. 那么我们开始整合:struts2  2.3.4 ,hibernate 5.2.10 ,spring ...

  10. Python将纳入高考?

    最近,"Python将纳入高考"的消息,狠狠地刷了朋友圈. 尽管这则消息目前还未得到官方的确认,但人们对于Python的火热关注度,还是引来众程序员热议. 虽然小编资历尚浅,但还是 ...