POJ3233_Matrix Power Series_矩阵幂_C++
题目:http://poj.org/problem?id=3233
这是今天考试的题目,结果没想出来写了个暴力30分,看完题解之后觉得自己是SB
首先暴力就是一个个乘然后相加,时间是O(kn3),极限数据要跑一个月才跑得出来
我们思考,求幂的话有快速幂(不会快速幂戳这里: http://www.cnblogs.com/hadilo/p/5719139.html ),那么矩阵一样也是可以的是不是
因为对于方阵A来说,(A2)2=A4
于是实数怎样做快速幂,矩阵就怎样做
while (m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
手写一个 mult 函数,就用最普通的 n3 矩阵乘法
(矩阵的基本运算,通俗易懂 http://www.cnblogs.com/hadilo/p/5865541.html)
void mult(int x[N][N],int y[N][N])
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
}
但题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂
那么我们可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵
我们将 S 取幂,会发现一个特性
Sk 右上角那一块不正是我们要求的 A+A2+...+Ak 吗?
于是我们构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵
时间降为O(n3log2k),从一个月到0.8秒的跨越
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; const int N=;
int c[N][N],a[N][N],b[N][N],n,mo;
void mult(int x[N][N],int y[N][N])
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
}
int main()
{
int m,i,j;
scanf("%d%d%d",&n,&m,&mo);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++) scanf("%d",&a[i][j]);
a[i][i+n]=a[i+n][i+n]=b[i][i]=b[i+n][i+n]=;
}
n*=;
m++;
while (m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
n/=;
for (i=;i<=n;i++) b[i][i+n]--;
for (i=;i<=n;i++)
{
for (j=;j<n;j++) printf("%d ",b[i][j+n]);
printf("%d\n",b[i][j+n]);
}
return ;
}
版权所有,转载请联系作者,违者必究
QQ:740929894
POJ3233_Matrix Power Series_矩阵幂_C++的更多相关文章
- nyoj_299_Matrix Power Series_矩阵快速幂
Matrix Power Series 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 Given a n × n matrix A and a positive i ...
- Matrix Power Series POJ - 3233 矩阵幂次之和。
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...
- POJ 2778 AC自己主动机+矩阵幂 不错的题
http://poj.org/problem?id=2778 有空再又一次做下,对状态图的理解非常重要 题解: http://blog.csdn.net/morgan_xww/article/deta ...
- CodeForces621E 快速矩阵幂优化dp
有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...
- HDU 2157 矩阵幂orDP
How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- Java大数——快速矩阵幂
Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...
- bzoj-4870-组合dp+矩阵幂
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 829 Solved: 446[Submit][Statu ...
- POJ-3744-概率dp+矩阵幂(分段)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10214 Accepted: 2980 Desc ...
- HDU - 6395 Sequence (分块+快速矩阵幂)
给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...
随机推荐
- eureka集群高可用配置
譬如eureka.client.register-with-eureka和fetch-registry是否要配置,配不配区别在哪里:eureka的客户端添加service-url时,是不是需要把所有的 ...
- js dom学习
创建dom元素 var oLi = document.creteElement('li'); //创建livar aLi = oUl.getElementsByTagName('li');oLi.in ...
- SpringBoot(六)_AOP统一处理请求
什么是AOP AOP 是一种编程范式,与编程语言无关: 将通用逻辑从业务逻辑中分离出来(假如你的业务是一条线,我们不在业务线上写一行代码就能完成附加任务!我们会把代码写在其他的地方): 具体实现 (1 ...
- JAVA里的布尔运算符-甲骨文面试题
重要一点: (& ,|) ==>二进制布尔运算符,(&&,||)==>条件布尔运算符 二进制布尔运算符,两边都会执行,不管左边是否为真或假==>对于运算符两边 ...
- Cannot create file"C:\Users\LML\AppData\Local\Temp\EditorLineEnds.ttr"。另一个程序正在使用此文件,进程无法访问。
不能二次启动,每次开机第一次都ok,出于习惯,总是想试试第二次打开软件是否正常,结果不出所料,出现了“Cannot create file"C:\Users\LML\AppData\Loca ...
- Java的StringBuIlder扩容机制
JDK 1.6中,扩容的源码是这样: void expandCapacity(int minimumCapacity) { int newCapacity = (value.length + 1) * ...
- TeX-换行换页与段落命令
换行换页与段落命令1 UTF8nsung Abstract 文档在排版时往往要求每一行具有相同的长度, LATEX 为了对整段的文挡进行优化,将插入必要的换行和空恪.如果必要的话对于一行中不好放的单词 ...
- 【题解】CF#896 D-Nephren Runs a Cinema
容易发现这些 vip 用户并没什么用,所以考虑枚举手持50元与100元的人共有多少个.设手持50元的人 \(a\) 个,手持100元的人 \(a - k\) 个,那么一共是 \(2*a - k\) 个 ...
- 关于Swift中的泛函数find的问题
对于一个数组Array,我们往往需要判断其是否包含某个子项,又或者要查找某个子项是否在这个数组中. 假设有这样一个包含坐标的数组 var pointArray:[CGPoint] = [CGPoint ...
- BZOJ 3731: Gty的超级妹子树
3731: Gty的超级妹子树 Time Limit: 7 Sec Memory Limit: 32 MBSubmit: 346 Solved: 96[Submit][Status][Discus ...