POJ3233_Matrix Power Series_矩阵幂_C++
题目:http://poj.org/problem?id=3233
这是今天考试的题目,结果没想出来写了个暴力30分,看完题解之后觉得自己是SB

首先暴力就是一个个乘然后相加,时间是O(kn3),极限数据要跑一个月才跑得出来
我们思考,求幂的话有快速幂(不会快速幂戳这里: http://www.cnblogs.com/hadilo/p/5719139.html ),那么矩阵一样也是可以的是不是
因为对于方阵A来说,(A2)2=A4
于是实数怎样做快速幂,矩阵就怎样做
while (m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
手写一个 mult 函数,就用最普通的 n3 矩阵乘法
(矩阵的基本运算,通俗易懂 http://www.cnblogs.com/hadilo/p/5865541.html)
void mult(int x[N][N],int y[N][N])
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
}
但题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂
那么我们可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵

我们将 S 取幂,会发现一个特性

Sk 右上角那一块不正是我们要求的 A+A2+...+Ak 吗?
于是我们构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵
时间降为O(n3log2k),从一个月到0.8秒的跨越
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; const int N=;
int c[N][N],a[N][N],b[N][N],n,mo;
void mult(int x[N][N],int y[N][N])
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
}
int main()
{
int m,i,j;
scanf("%d%d%d",&n,&m,&mo);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++) scanf("%d",&a[i][j]);
a[i][i+n]=a[i+n][i+n]=b[i][i]=b[i+n][i+n]=;
}
n*=;
m++;
while (m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
n/=;
for (i=;i<=n;i++) b[i][i+n]--;
for (i=;i<=n;i++)
{
for (j=;j<n;j++) printf("%d ",b[i][j+n]);
printf("%d\n",b[i][j+n]);
}
return ;
}
版权所有,转载请联系作者,违者必究
QQ:740929894
POJ3233_Matrix Power Series_矩阵幂_C++的更多相关文章
- nyoj_299_Matrix Power Series_矩阵快速幂
Matrix Power Series 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 Given a n × n matrix A and a positive i ...
- Matrix Power Series POJ - 3233 矩阵幂次之和。
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...
- POJ 2778 AC自己主动机+矩阵幂 不错的题
http://poj.org/problem?id=2778 有空再又一次做下,对状态图的理解非常重要 题解: http://blog.csdn.net/morgan_xww/article/deta ...
- CodeForces621E 快速矩阵幂优化dp
有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...
- HDU 2157 矩阵幂orDP
How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- Java大数——快速矩阵幂
Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...
- bzoj-4870-组合dp+矩阵幂
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 829 Solved: 446[Submit][Statu ...
- POJ-3744-概率dp+矩阵幂(分段)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10214 Accepted: 2980 Desc ...
- HDU - 6395 Sequence (分块+快速矩阵幂)
给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...
随机推荐
- ci钩子
钩子 - 扩展框架核心 CodeIgniter 的钩子特性提供了一种方法来修改框架的内部运作流程,而无需修改 核心文件.CodeIgniter 的运行遵循着一个特定的流程,你可以参考这个页面的 应用程 ...
- [转帖]windows 2008 Server R2 /Win7启用TLS 1.2
来自新浪博客的 一个文章 自己很早之前曾经看过 iis的加密工具 但是当时没有认识到TLS1.2协议的问题 这里 晚上学习了一下. http://blog.sina.com.cn/s/blog_16 ...
- APP接口
<?phpClass Response{ /*** 返回json数据* @param $code 状态码* @param $message 描述信息* @param $data 数据* @par ...
- [MYSQL] 如何彻底卸载MYSQL5.x
找了这么久,只有这个可以完全卸载~~~,转自http://www.doc88.com/p-9435498025667.html
- ansible操作(一)
ansible晋级操作之ad-hoc命令 所谓的ad-hoc命令! 如果我们敲入一些命令去比较快的完成一些事情,而不需要将这些执行的命令特别保存下来, 这样的命令就叫做 ad-hoc 命令.Ansib ...
- BZOJ5092 分割序列(贪心)
设si为该序列的异或前缀和,则显然相当于求Σmax{sj+sj^si} (i=1~n,j=0~i).从高位到低位考虑,如果该位si为1,无论sj怎么填都是一样的:如果该位si为0,则sj该位应尽量为1 ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- 【刷题】洛谷 P1402 酒店之王
题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...
- 【刷题】BZOJ 1537 [POI2005]Aut- The Bus
Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...
- Luogu 1063 能量项链(动态规划)
Luogu 1063 能量项链(动态规划) Description 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某 ...