传送门啦

非常神奇的分块大法。

这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $

我们设数组 $ f[i][j] $ 表示在 % $ i $ 意义下余数是 $ j $ 的数的总和。

然后我们以 $ \sqrt(n) $ 为界限,小于 $ \sqrt(n) $ 的直接调用数组,剩下的暴力查找。修改的话看代码吧,真的不难。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 150005; inline int read(){
char ch = getchar();
int f = 1 ,x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,m,a[maxn],x,y;
char flag;
long long f[390][390];//表示在 %i 意义下 余数是 j 的数的总和 int main(){
n = read(); m = read();
for(int i=1;i<=n;i++){
a[i] = read();
for(int j=1;j<=sqrt(n);j++)
f[j][i % j] += a[i];
}
while(m--){
cin >> flag;
x = read(); y = read();
if(flag == 'A'){
if(x * x <= n)
printf("%lld\n",f[x][y]);
else {
int sum = 0;
for(int j=y;j<=n;j+=x)
sum += a[j];
printf("%d\n",sum);
}
}
else {
for(int j=1;j<=sqrt(n);j++)
f[j][x % j] += y - a[x];
a[x] = y;
}
}
return 0;
}

洛谷P3396哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  4. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  5. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  8. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

随机推荐

  1. Java的内存结构

    Java中的内存结构 运行时数据区域的划分: 程序计数器(PC寄存器) 程序计数器(Program Counter Register)是一块较小的内存空间,可以看做是当前线程所执行的字节码的行号指示器 ...

  2. js子节点children和childnodes的用法

    想要获取子节点的数量,有几种办法. childNodes 它会把空的文本节点当成节点, <ul> 文本节点 <li>元素节点</li> 文本节点 <li> ...

  3. ORB原理与源码解析

    转载: http://blog.csdn.net/luoshixian099/article/details/48523267 CSDN-勿在浮沙筑高台 没有时间重新复制代码,只能一股脑的复制,所以代 ...

  4. Chapter 2(算法)

    附件列表 算法.jpg

  5. IL指令集

    声明: 1.本指令集搜集自网上各个论坛帖子,欢迎补充 IL指令集 名称 说明     Add 将两个值相加并将结果推送到计算堆栈上.     Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推 ...

  6. 执行ldconfig命令后报错的解决过程:ldconfig: 目录 /lib 中的 libpng.so 和 libpng15.so.15.13.0 的 so 名称相同但类型不同。

    执行ldconfig命令后报错: 目录 /lib 中的 libpng.so 和 libpng15.so.15.13.0 的 so 名称相同但类型不同. 解决过程: mv /lib/libpng.so ...

  7. Python【异常处理】

    def f(): first = input('请输入除数:') second = input('请输入被除数:') try: first = int(first) second = int(seco ...

  8. IOS计算文字高度

    1.计算文字长度 NSString* str = @"你好"; .f; NSStringDrawingOptions options = NSStringDrawingUsesLi ...

  9. python3.6.4的importlib模块重载用法

    了解:模块的重载 考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块, 有的同学可能会想到直 ...

  10. Java并发编程原理与实战三:多线程与多进程的联系以及上下文切换所导致资源浪费问题

    一.进程 考虑一个场景:浏览器,网易云音乐以及notepad++ 三个软件只能顺序执行是怎样一种场景呢?另外,假如有两个程序A和B,程序A在执行到一半的过程中,需要读取大量的数据输入(I/O操作),而 ...