传送门啦

非常神奇的分块大法。

这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $

我们设数组 $ f[i][j] $ 表示在 % $ i $ 意义下余数是 $ j $ 的数的总和。

然后我们以 $ \sqrt(n) $ 为界限,小于 $ \sqrt(n) $ 的直接调用数组,剩下的暴力查找。修改的话看代码吧,真的不难。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 150005; inline int read(){
char ch = getchar();
int f = 1 ,x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,m,a[maxn],x,y;
char flag;
long long f[390][390];//表示在 %i 意义下 余数是 j 的数的总和 int main(){
n = read(); m = read();
for(int i=1;i<=n;i++){
a[i] = read();
for(int j=1;j<=sqrt(n);j++)
f[j][i % j] += a[i];
}
while(m--){
cin >> flag;
x = read(); y = read();
if(flag == 'A'){
if(x * x <= n)
printf("%lld\n",f[x][y]);
else {
int sum = 0;
for(int j=y;j<=n;j+=x)
sum += a[j];
printf("%d\n",sum);
}
}
else {
for(int j=1;j<=sqrt(n);j++)
f[j][x % j] += y - a[x];
a[x] = y;
}
}
return 0;
}

洛谷P3396哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  4. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  5. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  8. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

随机推荐

  1. Ntp服务器的搭建

    在搭建Ntp服务器的过程中,试过两种方案,具体如下: 方案一: 到ntp官网获取源码编译,失败   下载源码ntp-4.2.8 -> ./configure -> make 无法通过:   ...

  2. csu1377Putter && HOJ12816

    链接:(csu)http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1377 (HOJ)http://49.123.82.55/online/?actio ...

  3. timeshift 安装使用说明

    https://blog.csdn.net/hunter___/article/details/79751379 这里介绍一个可视化的备份软件:Timeshift,它不只能备份你的个人文件夹或应用程序 ...

  4. ElasticStack系列之十 & 生产中的问题与解决方案

    1. 由 gc 引起节点异常 问题: 因为 gc 时会使 jvm 停止工作,如果某个节点 gc 时间过长,master ping 3次(zen discovery默认 ping 失败重试 3 次)不通 ...

  5. UITableViewCell的separatorInset属性

    separatorInset这个属性是IOS7后才有的属性,所以需要判断一下,才能修改 if (IOS7_OR_LATER) { cell.separatorInset = UIEdgeInsetsZ ...

  6. android studio run 的时候,报the apk file does not exist on disk,

    1.首先 clean rebuild,重启,不能解决的话,再找到这个 然后是这里: 不用填,点ok,ok即可,他喵的,卡我俩小时

  7. ElasticSearch关键概念

    Elasticsearch 添加索引 一个存储关联数据的地方 用来指向一个或者多个分片(shards)的逻辑命名空间(logical namespcase) 应用程序直接与索引通信 一个分片(shar ...

  8. VBS 重启 TP-Link 路由器

    分享一个自己用的小工具,重启TP-Link路由器的,好像还是大学时候写的,献丑了. 其他路由器可能有些不同,但是思路都是差不多的. user = "admin" '路由器帐号 pa ...

  9. 利用XMLHttpRequest(XHR)对象实现与web服务器通信

    XMLHttpRequest对象:XMLHttpRequest是一个JS对象,页面利用它与web服务器通信.XHR对象的基本思想是让JS代码自己发送请求,以便随时获取数据,这种请求是异步的,也就是说请 ...

  10. 【Foreign】动态规划 [分治][DP]

    动态规划 Time Limit: 50 Sec  Memory Limit: 128 MB Description 一开始有n个数,一段区间的价值为这段区间相同的数的对数. 我们想把这n个数切成恰好k ...