HDU 2604 Queuing 矩阵高速幂
Queuing
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2483 Accepted Submission(s): 1169
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue
else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
3 8
4 7
4 8
6
2
1
题解
突然发现这类题目又是有一个小技巧的。先说题意,一个字符串,由f和m两种字符构成。如今的问题是,当中的子串,不出现“fff”和"fmf"的长度为L的串有多少个。
相同的,我们考虑一个充分长的串,确定他的最后两位之后,看看倒数第三位的字符是什么:
这里的x代表的是倒数第三位,能够看到,事实上这个是有规律可循的。我们仅仅要把生成fff和fmf的那种情况规避掉即可了。所以整个矩阵就是:
最后把矩阵中的所有的值所有加起来取模就可以。
代码演示样例
/****
*@author Shen
*@title HDU 2604
*/
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long int64; const int MAXN = 4;
const int MAXM = 4;
const int Mod = 1000000007; struct Matrax{
int n, m;
int64 mat[MAXN][MAXM];
Matrax(): n(-1), m(-1){}
Matrax(int _n, int _m): n(_n), m(_m){
memset(mat, 0, sizeof(mat));
}
void Unit(int _s){
n = _s; m = _s;
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
mat[i][j] = (i == j)? 1: 0;
}
}
}
void print(){
printf("n = %d, m = %d\n", n, m);
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++)
printf("%16d", mat[i][j]);
printf("\n");
}
}
}; Matrax add_mod(const Matrax& a,const Matrax& b,const int64 mod){
Matrax ans(a.n, a.m);
for (int i = 0; i < a.n; i++){
for (int j = 0; j < a.m; j++){
ans.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % mod;
}
}
return ans;
} Matrax mul(const Matrax& a,const Matrax& b){
Matrax ans(a.n, b.m);
for (int i = 0; i < a.n; i++){
for (int j = 0; j < b.m; j++){
int64 tmp = 0;
for (int k = 0; k < a.m; k++){
tmp += a.mat[i][k] * b.mat[k][j];
}
ans.mat[i][j] = tmp;
}
}
return ans;
} Matrax mul_mod(const Matrax& a, const Matrax& b, const int mod){
Matrax ans(a.n, b.m);
for (int i = 0; i < a.n; i++){
for (int j = 0; j < b.m; j++){
int64 tmp = 0;
for (int k = 0; k < a.m; k++){
tmp += (a.mat[i][k] * b.mat[k][j]) % mod;
}
ans.mat[i][j] = tmp % mod;
}
}
return ans;
} Matrax pow_mod(const Matrax& a, int64 k, const int mod){
Matrax p(a.n, a.m), ans(a.n, a.m);
p = a; ans.Unit(a.n);
if (k == 0) return ans;
else if (k == 1) return a;
else {
while (k){
if (k & 1){
ans = mul_mod(ans, p, mod);
k--;
}
else {
k /= 2;
p = mul_mod(p, p, mod);
}
}
return ans;
}
} int l, m; void solve(){
if (l <= 2)
{
int root = 1;
for (int i = 0; i < l; i++)
root *= 2;
cout << root % m << endl;
return;
} Matrax ans(1, 1); //tmp = cef ^ (l - 2);
//ans = vct * tmp;
//ans = ans * beg;
//res = ans.mat[0][0] % m; Matrax cef(4, 4), tmp(4, 4);
cef.mat[0][0] = 1; cef.mat[0][3] = 1;
cef.mat[1][2] = 1;
cef.mat[2][0] = 1;
cef.mat[3][1] = 1; cef.mat[3][2] = 1;
//cef.print(); Matrax beg(4, 1), vct(1, 4);
for (int i = 0; i < 4; i++)
beg.mat[i][0] = vct.mat[0][i] = 1; tmp = pow_mod(cef, l - 2, m);
//tmp.print(); vct = mul_mod(vct, tmp, m);
ans = mul_mod(vct, beg, m);
//ans.print(); int res = ans.mat[0][0];
cout << res % m << endl;
} int main(){
while (cin >> l >> m) solve();
return 0;
}
HDU 2604 Queuing 矩阵高速幂的更多相关文章
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- ZOJ 3690 & HDU 3658 (矩阵高速幂+公式递推)
ZOJ 3690 题意: 有n个人和m个数和一个k,如今每一个人能够选择一个数.假设相邻的两个人选择同样的数.那么这个数要大于k 求选择方案数. 思路: 打表推了非常久的公式都没推出来什么可行解,好不 ...
- HDU 2604 Queuing,矩阵高速幂
题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出: f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
- HDU 2256 Problem of Precision(矩阵高速幂)
题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
随机推荐
- 16/11/22_plsql
1.数据类型: char 固定长度,varchar 字符长度按照实际长度, varchar2 字符均存储2个字节, nvarchar 按照Unicode存储.number(m,n)总长度m,小数 n. ...
- HTML5元素1
文档和元数据元素 元素 说明 类型 HTML5与其他的变化 base 设置相对URL的基础 元数据 无变化 body 表示HTML文档的内容 无 有变化 DOCTYPE 表示HTML文档的开始 无 有 ...
- STL容器读书笔记
vector vector维护的是一个连续线性空间 vector是动态空间,随着元素的加入会自动扩容,扩充至当前size的两倍,然后将原内容拷贝,开始在原内容之后构造新元素,并释放空间 vector提 ...
- vue2.0组件通信各种情况总结与实例分析
Props在vue组件中各种角色总结 在Vue中组件是实现模块化开发的主要内容,而组件的通信更是vue数据驱动的灵魂,现就四种主要情况总结如下: 使用props传递数据---组件内部 //html & ...
- 跟我一起学WPF(0):初识WPF
WPF是什么 WPF是微软的新一代图形引擎系统,全称为Windows Presentation Foundation,从.NET3.0版本开始引入,为用户界面.2D/3D 图形.文档和媒体提供了统一的 ...
- 学习Nodejs的第一步
最近看了几本关于Node.js的书,本来个人技术分享网站http://yuanbo88.com/是打算用Node.js作为服务器端语言来处理后台的,后来又改成了PHP(也是自己研究,毕竟网上DEMO多 ...
- Codeforces Round #146 (Div. 1) C - Cyclical Quest 后缀自动机+最小循环节
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk mak ...
- Gitlab-API各状态码解释
200 – OK : This means that the GET , PUT, or DELETE request was successful. When you request a resou ...
- 调整linux系统时区
cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 好吧,使用tzselect又靠谱些,使用前把/etc/localtime删除了. 执行上 ...
- Xiaoguang Tu's Home Page
Xiaoguang Tu (涂晓光): CV: Ph.D. Candidate of School of Communication and Information Engineering, Univ ...