【题解】HDU4336 Card Collector
显然,这题有一种很简单的做法即直接状压卡牌的状态并转移期望的次数。但我们现在有一个更加强大的工具——min-max容斥。
min-max 容斥(对期望也成立):\(E[max(S)] = \sum_{T\subseteq S}^{\ }(-1)^{|T| - 1}E[min(T)]\)
我们可以让 \(E[max(S)]\) 表示 \(S\) 中所有元素均出现的期望时间(即最后一个元素出现的期望时间),\(E[min(S)]\) 表示 \(S\) 中任意一个元素出现的期望时间(即第一个元素出现的期望时间)。
那么,我们可以直接 \(2^{n}\) 枚举 \(T\) ,然后 \(E[min(T)] = \frac{1}{P}\) 。
Why? 原本用期望的定义式计算为:\(\sum_{i=1 }^{+\infty} P*(1 - P)^{i - 1}*i\),用等比数列求和即可求得。
#include <cstdio>
using namespace std;
#define db double
#define maxn 100
int n, cnt;
db ans, P, a[maxn]; void dfs(int now)
{
if(now == n + )
{
if(!cnt) return;
db T = (db) / P;
ans += (cnt & ) ? T : -T;
return;
}
P += a[now]; cnt ++; dfs(now + );
P -= a[now]; cnt --; dfs(now + );
} int main()
{
while(~scanf("%d", &n))
{
ans = ;
for(int i = ; i <= n; i ++)
scanf("%lf", &a[i]);
dfs(); printf("%.6lf\n", ans);
}
return ;
}
【题解】HDU4336 Card Collector的更多相关文章
- hdu4336 Card Collector 状态压缩dp
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- [HDU4336]Card Collector(min-max容斥,最值反演)
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu4336 Card Collector 【最值反演】
题目链接 hdu4336 题解 最值反演 也叫做\(min-max\)容斥,在计算期望时有奇效 \[max\{S\} = \sum\limits_{T \in S} (-1)^{|T| + 1}min ...
- hdu4336 Card Collector(概率DP,状态压缩)
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...
- hdu4336 Card Collector MinMax 容斥
题目传送门 https://vjudge.net/problem/HDU-4336 http://acm.hdu.edu.cn/showproblem.php?pid=4336 题解 minmax 容 ...
- hdu4336 Card Collector
Problem Description In your childhood, do you crazy for collecting the beautiful cards in the snacks ...
- [HDU4336]:Card Collector(概率DP)
题目传送门 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生日礼物.商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值$W_i$(每种礼物的喜悦值不能重复获得).每 ...
- hdu4336 Card Collector 概率dp(或容斥原理?)
题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...
- HDU-4336 Card Collector 概率DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...
随机推荐
- LINUX系统下跑分测试脚本:unixbench.sh
linux 系统跑分测试脚本: 一.下载脚本: wget http://teddysun.com/wp-content/uploads/unixbench.sh 二.更改权限: ...
- while循环计算规则:内循环—外循环!
num= 1 #值 =1while num <= 10 : # num(1)小于10 print(num) # 应该打印 这个1的值 num +=1 # num+=1等价于 num再加1 所以这 ...
- 关于Unity中OnGUI()的简单使用
有时候想要输出一些数据到屏幕上方便查看,新建一个UI对象又挺麻烦,用OnGUI()在屏幕上直接绘制UI比较方便. GUI.Label(, , , ), “aaa", style); 这条语句 ...
- 006 --MySQL索引原理
一 .索引的概念? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化 ...
- Spring入门学习笔记(4)——JDBC的使用
目录 Spring JDBC框架概览 JdbcTemplate类 配置数据源 数据访问对象(Data Access Object,DAO) 执行SQL命令 Spring JDBC框架概览 使用传统的J ...
- Pod的创建过程
Pod是kubernetes中最小的调度单位,里面包含多个容器,也是真正运行你服务的仓库,同一个pod中容器之间资源共享(IP .网络.cpu.mem.挂载目录等). 1. 准备一个yaml(RC/ ...
- 基于Python的信用评分卡模型分析(一)
信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...
- Vue.js 相关知识(组件)
1. 组件介绍 组件(component),vue.js最强大的功能之一 作用:封装可重用的代码,通常一个组件就是一个功能体,便于在多个地方都能调用该功能体 根组件:我们实例化的Vue对象就是一个组件 ...
- 微信小程序开发调试技巧
1. 查看线上小程序console a. 先打开开发小程序console b. 再打开线上小程序,此时可以查看console
- springboot通过http访问——修改访问的端口号
文章转载来于:https://blog.csdn.net/zknxx/article/details/53433592 有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的 ...