显然,这题有一种很简单的做法即直接状压卡牌的状态并转移期望的次数。但我们现在有一个更加强大的工具——min-max容斥。

    min-max 容斥(对期望也成立):\(E[max(S)] = \sum_{T\subseteq S}^{\ }(-1)^{|T| - 1}E[min(T)]\)

  我们可以让 \(E[max(S)]\) 表示 \(S\) 中所有元素均出现的期望时间(即最后一个元素出现的期望时间),\(E[min(S)]\) 表示 \(S\) 中任意一个元素出现的期望时间(即第一个元素出现的期望时间)。

  那么,我们可以直接 \(2^{n}\) 枚举 \(T\) ,然后 \(E[min(T)] = \frac{1}{P}\) 。

  Why? 原本用期望的定义式计算为:\(\sum_{i=1 }^{+\infty} P*(1 - P)^{i - 1}*i\),用等比数列求和即可求得。

#include <cstdio>
using namespace std;
#define db double
#define maxn 100
int n, cnt;
db ans, P, a[maxn]; void dfs(int now)
{
if(now == n + )
{
if(!cnt) return;
db T = (db) / P;
ans += (cnt & ) ? T : -T;
return;
}
P += a[now]; cnt ++; dfs(now + );
P -= a[now]; cnt --; dfs(now + );
} int main()
{
while(~scanf("%d", &n))
{
ans = ;
for(int i = ; i <= n; i ++)
scanf("%lf", &a[i]);
dfs(); printf("%.6lf\n", ans);
}
return ;
}

【题解】HDU4336 Card Collector的更多相关文章

  1. hdu4336 Card Collector 状态压缩dp

    Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  2. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. hdu4336 Card Collector 【最值反演】

    题目链接 hdu4336 题解 最值反演 也叫做\(min-max\)容斥,在计算期望时有奇效 \[max\{S\} = \sum\limits_{T \in S} (-1)^{|T| + 1}min ...

  4. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  5. hdu4336 Card Collector MinMax 容斥

    题目传送门 https://vjudge.net/problem/HDU-4336 http://acm.hdu.edu.cn/showproblem.php?pid=4336 题解 minmax 容 ...

  6. hdu4336 Card Collector

    Problem Description In your childhood, do you crazy for collecting the beautiful cards in the snacks ...

  7. [HDU4336]:Card Collector(概率DP)

    题目传送门 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生日礼物.商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值$W_i$(每种礼物的喜悦值不能重复获得).每 ...

  8. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  9. HDU-4336 Card Collector 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...

随机推荐

  1. LINUX系统下跑分测试脚本:unixbench.sh

    linux 系统跑分测试脚本:     一.下载脚本:        wget http://teddysun.com/wp-content/uploads/unixbench.sh 二.更改权限:  ...

  2. while循环计算规则:内循环—外循环!

    num= 1 #值 =1while num <= 10 : # num(1)小于10 print(num) # 应该打印 这个1的值 num +=1 # num+=1等价于 num再加1 所以这 ...

  3. 关于Unity中OnGUI()的简单使用

    有时候想要输出一些数据到屏幕上方便查看,新建一个UI对象又挺麻烦,用OnGUI()在屏幕上直接绘制UI比较方便. GUI.Label(, , , ), “aaa", style); 这条语句 ...

  4. 006 --MySQL索引原理

    一 .索引的概念? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化 ...

  5. Spring入门学习笔记(4)——JDBC的使用

    目录 Spring JDBC框架概览 JdbcTemplate类 配置数据源 数据访问对象(Data Access Object,DAO) 执行SQL命令 Spring JDBC框架概览 使用传统的J ...

  6. Pod的创建过程

    Pod是kubernetes中最小的调度单位,里面包含多个容器,也是真正运行你服务的仓库,同一个pod中容器之间资源共享(IP .网络.cpu.mem.挂载目录等). 1.  准备一个yaml(RC/ ...

  7. 基于Python的信用评分卡模型分析(一)

    信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...

  8. Vue.js 相关知识(组件)

    1. 组件介绍 组件(component),vue.js最强大的功能之一 作用:封装可重用的代码,通常一个组件就是一个功能体,便于在多个地方都能调用该功能体 根组件:我们实例化的Vue对象就是一个组件 ...

  9. 微信小程序开发调试技巧

    1.  查看线上小程序console a.  先打开开发小程序console b.  再打开线上小程序,此时可以查看console

  10. springboot通过http访问——修改访问的端口号

    文章转载来于:https://blog.csdn.net/zknxx/article/details/53433592 有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的 ...