CF 348 D. Turtles
D. Turtles
题意:
给定一个N*M的棋盘,有些格子不能走,问有多少种从(1,1)到(N,M)的两条不相交路径。
分析:
定理:点集A={a1,a2,…an}A={a1,a2,…an}到B={b1,b2,…bn}B={b1,b2,…bn}的不相交路径条数等于下面矩阵的行列式。
$$\begin{bmatrix} e(a_1, b_1) & e(a_1, b_2) & \dots & e(a_1, b_n) \\ e(a_2, b_1) & e(a_2, b_2) & \dots & e(a_2, b_n) \\ \dots & \dots & \dots & \dots \\ e(a_n, b_1) & e(a_n, b_2) & \dots & e(a_n, b_n) \\ \end{bmatrix}$$
e(a,b)为从点a到点b的路径条数,本质是容斥。
这道题目中,任意一条合法的路径都是从(1,2)->(n-1,m)和(2,1)->(n,m-1)的,所以$A=\{(1,2),(2,1)\}$,$B=\{(n-1,m),(n,m-1)\}$。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = 1e9 + ;
int f[N][N];
char s[N][N]; int Calc(int a,int b,int c,int d) {
memset(f, , sizeof(f));
for (int i = a; i <= c; ++i)
for (int j = b; j <= d; ++j)
if (s[i][j] == '.') {
if (i == a && j == b) f[i][j] = ;
else f[i][j] = (f[i - ][j] + f[i][j - ]) % mod;
}
return f[c][d];
}
int main() {
int n = read(), m = read();
for (int i = ; i <= n; ++i) scanf("%s", s[i] + );
LL t1 = Calc(, , n - , m), t2 = Calc(, , n, m - );
LL t3 = Calc(, , n, m - ), t4 = Calc(, , n - , m);
cout << (t1 * t2 % mod - t3 * t4 % mod + mod) % mod;
return ;
}
CF 348 D. Turtles的更多相关文章
- LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)
又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...
- Codeforces 348 D - Turtles
D - Turtles 思路: LGV 定理 (Lindström–Gessel–Viennot lemma) 从{\(a_1\),\(a_2\),...,\(a_n\)} 到 {\(b_1\),\( ...
- Codeforces 348 D - Turtles Lindström–Gessel–Viennot lemma
#include<bits/stdc++.h> using namespace std; #define y1 y11 #define fi first #define se second ...
- 做题记录 To 2019.2.13
2019-01-18 4543: [POI2014]Hotel加强版:长链剖分+树形dp. 3653: 谈笑风生:dfs序+主席树. POJ 3678 Katu Puzzle:2-sat问题,给n个变 ...
- ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'
凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- ARC下OC对象和CF对象之间的桥接(bridge)
在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...
- [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...
随机推荐
- Java 两个日期间的天数计算
在Java中计算两个日期间的天数,大致有2种方法:一是使用原生JDK进行计算,在JDK8中提供了更为直接和完善的方法:二是使用第三方库. 1.使用原生的JDK private static long ...
- [翻译] DKTagCloudView - 标签云View
DKTagCloudView 效果(支持点击view触发事件): Overview DKTagCloudView is a tag clouds view on iOS. It can generat ...
- C++ Boost在Windows和Linux下的编译安装
再debian下直接apt-get install gcc g++就可以了.按照类似的逻辑,再Fedora下yum install gcc g++ 报告无法找到g++包. 差了一下,原来这个包的名字叫 ...
- Scala编程之访问修饰符
private ,protected,public,在不加前两者声明时为public为公共式访问: private为私有式访问:protected为家族式访问,与Java一致. object Oute ...
- ZT Android4.2蓝牙基础架构学习
Android4.2蓝牙基础架构学习 分类: Jellybean Bluetooth Bluetooth 2013-10-13 23:58 863人阅读 评论(3) 收藏 举报 androidblue ...
- print(n) 和 while/for 并列的时候, print()只会打印出最后一个结果
n=0while n <10: n+=1print(n) # print(n)放在while的外面和while并列的时候, 只会打印出最后一个结果 n=0while n <10: n+=1 ...
- 【C#】#102 发送邮件
项目需求:定时的发送邮件,于是学习了如何发送邮件 下面有一个简单的例子.能够实现简单的发送邮件,加上附件可以添加一个属性[Attachment],然后配置上附件的路径 Demo下载 代码总共只有一下这 ...
- IO多路复用(select)
select在操作系统内部,维护了一个for循环,检测对象是否变化.select在各种平台都可使用,但效率不高.select对监听的个数是有限制的(1024) poll与select相同,但是没有监听 ...
- 【原创】python web应用性能测试出现的问题以及使用的工具
uwsgi参数设置问题 问题汇总 listen 参数设置过小导致并发上不去 解决办法 更改listen参数, 请先确认linux系统的上限(tcp_max_syn_backlog,somaxconn) ...
- nodejs11安装教程(升级最新版本)
nodejs需要不断升级,那么电脑如何安装nodejs11呢,下面将通过亲身实践来详细介绍 工具/原料 电脑 nodejs11安装包 方法/步骤 访问node11官网,下载安装包,如下 ...