D. Turtles

链接

题意:

  给定一个N*M的棋盘,有些格子不能走,问有多少种从(1,1)到(N,M)的两条不相交路径。

分析:

  lGV定理

  定理:点集A={a1,a2,…an}A={a1,a2,…an}到B={b1,b2,…bn}B={b1,b2,…bn}的不相交路径条数等于下面矩阵的行列式。

  $$\begin{bmatrix} e(a_1, b_1) & e(a_1, b_2) & \dots & e(a_1, b_n) \\ e(a_2, b_1) & e(a_2, b_2) & \dots & e(a_2, b_n) \\ \dots & \dots & \dots & \dots \\ e(a_n, b_1) & e(a_n, b_2) & \dots & e(a_n, b_n) \\ \end{bmatrix}$$

  e(a,b)为从点a到点b的路径条数,本质是容斥。

  这道题目中,任意一条合法的路径都是从(1,2)->(n-1,m)和(2,1)->(n,m-1)的,所以$A=\{(1,2),(2,1)\}$,$B=\{(n-1,m),(n,m-1)\}$。  

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = 1e9 + ;
int f[N][N];
char s[N][N]; int Calc(int a,int b,int c,int d) {
memset(f, , sizeof(f));
for (int i = a; i <= c; ++i)
for (int j = b; j <= d; ++j)
if (s[i][j] == '.') {
if (i == a && j == b) f[i][j] = ;
else f[i][j] = (f[i - ][j] + f[i][j - ]) % mod;
}
return f[c][d];
}
int main() {
int n = read(), m = read();
for (int i = ; i <= n; ++i) scanf("%s", s[i] + );
LL t1 = Calc(, , n - , m), t2 = Calc(, , n, m - );
LL t3 = Calc(, , n, m - ), t4 = Calc(, , n - , m);
cout << (t1 * t2 % mod - t3 * t4 % mod + mod) % mod;
return ;
}

CF 348 D. Turtles的更多相关文章

  1. LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)

    又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...

  2. Codeforces 348 D - Turtles

    D - Turtles 思路: LGV 定理 (Lindström–Gessel–Viennot lemma) 从{\(a_1\),\(a_2\),...,\(a_n\)} 到 {\(b_1\),\( ...

  3. Codeforces 348 D - Turtles Lindström–Gessel–Viennot lemma

    #include<bits/stdc++.h> using namespace std; #define y1 y11 #define fi first #define se second ...

  4. 做题记录 To 2019.2.13

    2019-01-18 4543: [POI2014]Hotel加强版:长链剖分+树形dp. 3653: 谈笑风生:dfs序+主席树. POJ 3678 Katu Puzzle:2-sat问题,给n个变 ...

  5. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  6. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  7. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  8. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  9. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

随机推荐

  1. 从一个简单的 JPA 示例开始

    本文主要讲述 Spring Data JPA,但是为了不至于给 JPA 和 Spring 的初学者造成较大的学习曲线,我们首先从 JPA 开始,简单介绍一个 JPA 示例:接着重构该示例,并引入 Sp ...

  2. js判断状态

    '<input type="radio" class="danxuan" name="danxuan" code="'||v ...

  3. 让两个对象间建立weak关系

    让两个对象间建立weak关系 这是为了给两个对象间建立weak关系,当一个对象被释放时,另外一个对象再获取这个值时就是nil,也就是不持有这个对象:) 源码: WeakRelatedDictionar ...

  4. 一份非常完整的 MySQL 规范

    源自:https://www.cnblogs.com/huchong/p/10219318.html 一.数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割. 所有数据库对象名称禁止使用 ...

  5. Linux 系统的/var目录

    /var目录主要针对常态性变动的文件,包括缓存(cache).登录档(log file)以及某些软件运作所产生的文件 /var目录下的重要目录 目录 应放置文件内容 /var/cache/ 应用程序本 ...

  6. Microsoft Teams 版本与语音落地介绍

    我亲爱的小伙伴们,失踪人口回归啦~~ 今天和大家聊的是Microsoft Teams,Teams作为协作的集大成者,可以实现skype for Business的所有功能,还可以在teams里集合Of ...

  7. MATLAB 正则表达式(一)(转)

    http://blog.sina.com.cn/s/blog_53f29119010009uf.html 正则表达式这个词上大学的时候就听同寝室的一个家伙常念叨——那家伙当然很厉害啦,现在已经发洋财去 ...

  8. 查找数据库表中重复的 Image 类型值

    直接上代码: SELECT * FROM [dbo].[V_Courseware] ))) IN ())) FROM [dbo].[V_Courseware] ))) ); 替换以上代码中相应对象即可 ...

  9. foreach 计数

    foreach(var item in list.Select((x, i) => new { x, i })){    User user = item.x;    int Idx = ite ...

  10. exits, in, left join性能比较

    exits  in left join性能比较 ,笔者使用的是MYSQL数据库,这三个关键字方法在其他的关系数据库里也是大同小异,如果各种有兴趣,自行比较. 我这里有一个249_account 表,总 ...