[LibreOJ 3124]【CTS2019】氪金手游【容斥原理】【概率】【树形DP】
Description


Solution
首先它的限制关系是一个树形图
首先考虑如果它是一个外向树该怎么做。
这是很简单的,我们相当于每个子树的根都是子树中最早出现的点,概率是容易计算的。
设DP状态\(f[i][j]\)为做到以i为根的子树,子树中权值W的和为j且满足限制关系的概率。
然后就可以直接利用子树背包DP来转移了。
如果有些边是反向(儿子到父亲)的,我们可以通过容斥来把这些边反过来,要么是彻底没有这条边的限制,要么是反向变成父亲到儿子方向,系数乘一个(-1)即可。
具体可以参考代码。
Code
#include <bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define N 1005
#define LL long long
#define mo 998244353
using namespace std;
int n,fs[N],nt[2*N],dt[2*N],sz[N],m1;
LL ny[N],ap[N][4],f[N][3*N],pr[2*N],g[3*N],np[3*N];
LL ksm(LL k,LL n)
{
LL s=1;
for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
return s;
}
void link(int x,int y)
{
nt[++m1]=fs[x];
dt[fs[x]=m1]=y;
}
void dfs(int k,int fa)
{
f[k][0]=1;
for(int i=fs[k];i;i=nt[i])
{
int p=dt[i];
if(p!=fa)
{
dfs(p,k);
fo(x,0,3*sz[k])
fo(y,1,3*sz[p])
{
(g[x+y]+=f[k][x]*f[p][y]%mo*pr[i]%mo)%=mo;
if(pr[i]==mo-1) (g[x]+=f[k][x]*f[p][y]%mo)%=mo;
}
sz[k]+=sz[p];
fo(j,0,3*sz[k]) f[k][j]=g[j],g[j]=0;
}
}
sz[k]++;
fod(i,3*sz[k],0)
{
f[k][i]=0;
fo(j,1,3) if(i>=j) (f[k][i]+=f[k][i-j]*ny[k]%mo*ap[k][j]%mo*np[i]%mo*(LL)j%mo)%=mo;
}
}
int main()
{
cin>>n;
fo(i,1,n)
{
fo(j,1,3) scanf("%d",&ap[i][j]),ny[i]+=ap[i][j];
ny[i]=ksm(ny[i]%mo,mo-2);
}
fo(i,1,3*n) np[i]=ksm(i,mo-2);
fo(i,1,n-1)
{
int x,y;
scanf("%d%d",&x,&y);
link(x,y),link(y,x);
pr[m1-1]=1,pr[m1]=mo-1;
}
dfs(1,0);
LL ans=0;
fo(i,1,3*n) (ans+=f[1][i])%=mo;
printf("%lld\n",ans);
}
[LibreOJ 3124]【CTS2019】氪金手游【容斥原理】【概率】【树形DP】的更多相关文章
- [CTS2019]氪金手游
[CTS2019]氪金手游 各种情况加在一起 先考虑弱化版:外向树,wi确定 i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关 这些概率乘起来就是最终合法的概率 如果都是外向树, f ...
- LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP
传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...
- 【题解】Luogu P5405 [CTS2019]氪金手游
原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarro ...
- Luogu5405 CTS2019氪金手游(容斥原理+树形dp)
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...
- [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...
- 题解-CTS2019氪金手游
Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...
- [CTS2019]氪金手游(容斥+树形背包DP)
降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己. ...
- p5405 [CTS2019]氪金手游
题目大意 题意狗屁不通 看毛子语都比看这个题面强 分析 我们假设这棵树是一个内向树 那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望 转移只需枚举当前期望大小和子树期望大小即可 但是由于 ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- 【CTS2019】氪金手游(动态规划)
[CTS2019]氪金手游(动态规划) 题面 LOJ 洛谷 题解 首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间 ...
随机推荐
- JS中正则表达式应用
判断字符串是否含有中文字符: var pattern = /.*[\u4e00-\u9fa5]+.*$/; var str = "asd按时"; console.log(patte ...
- C++多线程基础学习笔记(三)
一.detach()大坑 上一篇随笔(二)中提到detach()是用来分离主线程和子线程的,那么需要考虑一个问题,就是如果主线程跑完了,主线程中定义的变量就会被销毁(释放内存),这时回收变量仍作为参数 ...
- IDEA项目目录里下找不到src,但是src确实存在的的解决方案
写代码的时候可能出现写着写着src就找不到了,我个人认为是触发了热键导致src被隐藏了,下面就是设置src可见和不可见的操作 这个其实是被隐藏了,打开就好,位置如下:
- 2019中山纪念中学夏令营-Day2[JZOJ]
博客的开始,先聊聊代码实现: 每次比赛以后,要有归纳错误的习惯. 错误小结: 1.读入:scanf(“%c”)会读入回车和空格,但cin不会. 2.对于二维数组的输入,不能把m,n搞混了,会引起严重的 ...
- MYSQL中的UNION和UNION ALL
SQL UNION 操作符 UNION 操作符用于合并两个或多个 SELECT 语句的结果集. 请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每 ...
- mongodb 数据操作(2)
查询 db.student.find({}) 查询db.student.find({name:"李强1"}) 查询 条件查询 db.student.find({sex:&quo ...
- vue-router动态路由设置参数可选
在日常工作中,我们需要将匹配到的所有路由,映射到一个组件上. 如下代码想要达到的效果: 不传page和id,则映射到user默认list页面 传page和id,根据page不同,显示不同的页面 问题 ...
- redis 学习(5)-- 列表类型
redis 学习(5)-- 列表类型 列表特点 有序.可以重复.左右两边插入弹出 索引相关知识 索引从左往右,从0开始逐个增大 0 1 2 3 4 5 索引从右往左,从-1开始逐个减小 -6 -5 - ...
- 数据库oracle一些操作(MiTAC)
oracle计算时间差函数: 两个Date类型字段:START_DATE,END_DATE,计算这两个日期的时间差(分别以天,小时,分钟,秒,毫秒): 天: ROUND(TO_NUMBER(END_D ...
- sql--ALTER
ALTER TABLE 语句 ALTER TABLE 语句用于在已有的表中添加.修改或删除列. SQL ALTER TABLE 语法 如需在表中添加列,请使用下列语法: ALTER TABLE tab ...