题意 : 找出 1 到 N 点的所有路径当中拥有最大承载量的一条路,输出这个最大承载量!而每一条路的最大承载量由拥有最大承载量的那一条边决定

分析 : 与 POJ 2253 相似且求的东西正好相反,属于求从一个指定起点到终点的所有路径当中拥有最大or最小的边是什么。只要改变一下 Dijkstra 中 DP 的意义 ==> Dis[i] 表示起点到 i 点的所有路径当中拥有最大or最小的边的权值。当然也可以使用最小生成树做法,但是这里的边应该是从大排到小,其他的都和 POJ 2253 一模一样了!

#include<bits/stdc++.h>
using namespace std;
const int INF  = 0x3f3f3f3f;
;

bool vis[maxn];
int G[maxn][maxn],dis[maxn];
int n, m;
int dijkstra(int v)
{
    int i, j, u;
    ;i<=n;i++){
        dis[i]=G[v][i];
        vis[i]=false;
    }

    dis[v]=;
    vis[v]=true;
    ;i<n;i++){
        int MaxEdge = -INF;
        ;j<=n;j++){
            if(!vis[j] && MaxEdge < dis[j]){
                MaxEdge = dis[j];
                u = j;
            }
        } if(MaxEdge == -INF) break;

        vis[u]=true;
        ;j<=n;j++){
            if(!vis[j]){
                dis[j] = max(dis[j], min(dis[u], G[u][j]));
            }
        }
    }
    return dis[n];
}
int main()
{
    int nCase;
    scanf("%d", &nCase);
    ; t<=nCase; t++){
        scanf("%d %d", &n, &m);
        ; i<=n; i++)
            ; j<=n; j++)
                G[i][j] = ;

        int a, b, c;
        ; i<m; i++){
            scanf("%d %d %d", &a, &b, &c);
            G[a][b] = G[b][a] = c;
        }
        printf("Scenario #%d:\n", t);
        printf());
    }
    ;
}

POJ 1797 Heavy Transprotation ( 最短路变形 || 最小生成树 )的更多相关文章

  1. POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)

    题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...

  2. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  3. poj 1797 Heavy Transportation(Dijkstar变形)

    http://poj.org/problem?id=1797 给定n个点,及m条边的最大负载,求顶点1到顶点n的最大载重量. 用Dijkstra算法解之,只是需要把“最短路”的定义稍微改变一下, A到 ...

  4. POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)

    题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...

  5. POJ 2253 Frogger【最短路变形/最小生成树的最大权/最小瓶颈树/A到B多条路径中的最小的最长边】

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...

  6. POJ 1797 Heavy Transportation (最短路)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 22440   Accepted:  ...

  7. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  8. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  9. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

随机推荐

  1. Java 基础-类与面向对象

    类 Object 类(java.lang.Object)是所有 Java 类的直接或间接父类. 成员方法及变长参数 方法定义: [public | protected | private] [stat ...

  2. 【USACO18JAN】MooTube

    原文链接:https://blog.csdn.net/Patrickpwq/article/details/86656456 给定一棵n个点的树(n=1e5),有边权, 两点间距离定义为两点路径上的 ...

  3. 003/node.js--代理服务(解决跨域问题)

    业务描述: 1.web前端发送http请求 2.web后端为https协议 如何保证web前端发送http请求到web后端(跨域问题:域名不一致即跨域), 因此用node.js写了个代理服务,转发前端 ...

  4. oracle--多表联合查询sql92版

    sql92学习 -查询员工姓名,工作,薪资,部门名称 sql的联合查询(多表查询) --1.sql92标准 ----笛卡尔积:一件事情的完成需要很多步骤,而不同的步骤有很多种方式,完成这件事情的所有方 ...

  5. java_第一年_JDBC(5)

    事务概念:事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功: 开始事务:start transaction 提交事务:commit 回滚事务:rollback 事务的四大特 ...

  6. python小感悟(初学者)

    计算机语言的起源: 在计算机刚发明出来的时候,是一大堆的机械硬件,然后技术人员开发了操作系统,操作系统是最底层的软件,负责与硬件沟通,执行其他软件的命令.由于计算机只能识别0和1两种特殊的机器语言,所 ...

  7. CSRF verification failed. Request aborted.错误解决办法

    在Django项目的页面,提交form表单POST请求时,会出现报错:CSRF verification failed. Request aborted. 需要在form表单中加:{% csrf_to ...

  8. Keyboarding (bfs+预处理+判重优化)

    # #10030. 「一本通 1.4 练习 2」Keyboarding [题目描述] 给定一个 $r$ 行 $c$ 列的在电视上的"虚拟键盘",通过「上,下,左,右,选择」共 $5 ...

  9. Win10系统下插入耳机前面板无声后面板有声的处理

    问题描述: 当耳机插入后面板绿色口(注意:耳机扬声器为绿色口,红色为话筒麦克风:前后面板一样):可以听到声音,但是转到前面板插入后,无声音:调出声音面板发现声音可随音度波动 处理步骤: 1.保证插牢接 ...

  10. linux grep 设置高亮显示

    [root@eric ~]# vi /etc/profile alias grep='grep --color=auto' [root@eric ~]# source /etc/profile