1.索引的基本架构

PG的索引是B+树,B+树是为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接:

			    meta page
|
root page(8kb,一个记录占32个bit,那么就能存256个branch page,超过了就需要扩充一级branch page来存储leaf page)
|
    branch page …
| | |
branch page branch page branch page …
| | | | | | |
leaf page leaf page leaf page leaf page leaf page leaf page leaf page …
|
———————-------------
| key |
| (block,offset) | 一个leaf page存放多个索引值
———————-------------

其中meta page和root page是必须有的,meta page需要一个页来存储,表示指向root page的page id。

随着记录数的增加,一个root page可能存不下所有的heap item,就会有branch page,甚至多层的branch page。

leaf page存储具体的key和value。

一共有几层branch,就用btree page元数据的 level 来表示,如果level为0,则表示没有branch层,root page直接指向leaf page,最多记录256条记录(假如条指针占32bit);level为1, 则表示有一层branch page,则root page存放branch page的指针,branch page指向leaf page,最多记录256*256条。依次类推,且bock size是可以设置的,当设置的更大,则一个级别存储的数据就更多。

2.看看具体的结构

PostgreSQL B-Tree是一种变种(high-concurrency B-tree management algorithm),算法详情请参考 src/backend/access/nbtree/README。我们可以使用pageinspect插件,内窥B-Tree的结构:

apple=# create extension pageinspect;

CREATE EXTENSION

apple=# \dx

                                List of installed extensions

    Name     | Version |   Schema   |                      Description

-------------+---------+------------+-------------------------------------------------------

 pageinspect | 1.7     | public     | inspect the contents of database pages at a low level

 plpgsql     | 1.0     | pg_catalog | PL/pgSQL procedural language

(2 rows)

apple=# create table test(id int primary key, info text);

CREATE TABLE

apple=# insert into test select generate_series(1, 1000), md5(random()::text);

INSERT 0 1000

apple=# vacuum ANALYZE test;

VACUUM

apple=# \d test

                Table "public.test"

 Column |  Type   | Collation | Nullable | Default

--------+---------+-----------+----------+---------

 id     | integer |           | not null |

 info   | text    |           |          |

Indexes:

    "test_pkey" PRIMARY KEY, btree (id)

apple=# select * from bt_metap('test_pkey');

 magic  | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples

--------+---------+------+-------+----------+-----------+-------------+-------------------------

 340322 |       3 |    3 |     1 |        3 |         1 |           0 |                    1000

(1 row)

apple=# select * from bt_page_stats('test_pkey',1);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     1 | l    |        367 |          0 |            16 |      8192 |       808 |         0 |         2 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey',2);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     2 | l    |        367 |          0 |            16 |      8192 |       808 |         1 |         4 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey',3);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     3 | r    |          3 |          0 |            13 |      8192 |      8096 |         0 |         0 |    1 |          2

(1 row)

apple=# select * from bt_page_stats('test_pkey',0);

2019-05-29 11:10:47.567 CST [49885] ERROR:  block 0 is a meta page

2019-05-29 11:10:47.567 CST [49885] STATEMENT:  select * from bt_page_stats('test_pkey',0);

ERROR:  block 0 is a meta page

apple=# select * from bt_page_stats('test_pkey',4);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     4 | l    |        268 |          0 |            16 |      8192 |      2788 |         2 |         0 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey',5);

2019-05-29 11:11:18.181 CST [49885] ERROR:  block number out of range

2019-05-29 11:11:18.181 CST [49885] STATEMENT:  select * from bt_page_stats('test_pkey',5);

ERROR:  block number out of range

meta page

root page         #  btpo_flags=2

branch page    #  btpo_flags=0

leaf page         #  btpo_flags=1

如果即是leaf又是root  btpo_flags=3

根据btpo_flage可以看出结构应该是这样,索引占了5block:

				meta page (block 0,btpo_flags为2,上面可以看到最后一列)
|
root page ( block 3)
| | |
leaf page( block 1) leaf page ( block 2)leaf page( block 4)
|
———————-------------
| key |
| (block,offset) |
———————-------------

查看root page

apple=# select * from bt_page_items('test_pkey',3);

 itemoffset |  ctid  | itemlen | nulls | vars |          data

------------+--------+---------+-------+------+-------------------------

          1 | (1,0)  |       8 | f     | f    |

          2 | (2,7)  |      16 | f     | f    | 6f 01 00 00 00 00 00 00

          3 | (4,13) |      16 | f     | f    | dd 02 00 00 00 00 00 00

(3 rows)

查看leaf page

apple=# select * from bt_page_items('test_pkey',1);
itemoffset | ctid | itemlen | nulls | vars | data
------------+---------+---------+-------+------+-------------------------
1 | (3,7) | 16 | f | f | 6f 01 00 00 00 00 00 00
2 | (0,1) | 16 | f | f | 01 00 00 00 00 00 00 00
3 | (0,2) | 16 | f | f | 02 00 00 00 00 00 00 00
4 | (0,3) | 16 | f | f | 03 00 00 00 00 00 00 00
5 | (0,4) | 16 | f | f | 04 00 00 00 00 00 00 00
6 | (0,5) | 16 | f | f | 05 00 00 00 00 00 00 00
7 | (0,6) | 16 | f | f | 06 00 00 00 00 00 00 00
8 | (0,7) | 16 | f | f | 07 00 00 00 00 00 00 00
….

查看一个item对应的记录:

apple=# select * from test where ctid = '(3,7)';
id | info
-----+----------------------------------
367 | 06818c090f9e5f63c95764342590a598
(1 row)

那么索引里面的key是怎么排序的?块为什么不是连续的,块2变为了root page

3.查看level的变化

apple=# drop table test;

DROP TABLE

apple=# create table test(id int primary key, info text);

CREATE TABLE

apple=# insert into test select t.id, md5(random()::text) from generate_series(1, 20) as t(id);

INSERT 0 20

apple=# select * from bt_page_stats('test_pkey', 1);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     1 | l    |         20 |          0 |            16 |      8192 |      7748 |         0 |         0 |    0 |          3

(1 row)

apple=# select * from bt_metap('test_pkey');

 magic  | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples

--------+---------+------+-------+----------+-----------+-------------+-------------------------

 340322 |       3 |    1 |     0 |        1 |         0 |           0 |                      -1

(1 row)

apple=# select bt_page_items('test_pkey', 1);

                 bt_page_items

------------------------------------------------

 (1,"(0,1)",16,f,f,"01 00 00 00 00 00 00 00")

 (2,"(0,2)",16,f,f,"02 00 00 00 00 00 00 00")

 (3,"(0,3)",16,f,f,"03 00 00 00 00 00 00 00")

 (4,"(0,4)",16,f,f,"04 00 00 00 00 00 00 00")

 (5,"(0,5)",16,f,f,"05 00 00 00 00 00 00 00")

 (6,"(0,6)",16,f,f,"06 00 00 00 00 00 00 00")

 (7,"(0,7)",16,f,f,"07 00 00 00 00 00 00 00")

 (8,"(0,8)",16,f,f,"08 00 00 00 00 00 00 00")

 (9,"(0,9)",16,f,f,"09 00 00 00 00 00 00 00")

 (10,"(0,10)",16,f,f,"0a 00 00 00 00 00 00 00")

 (11,"(0,11)",16,f,f,"0b 00 00 00 00 00 00 00")

 (12,"(0,12)",16,f,f,"0c 00 00 00 00 00 00 00")

 (13,"(0,13)",16,f,f,"0d 00 00 00 00 00 00 00")

 (14,"(0,14)",16,f,f,"0e 00 00 00 00 00 00 00")

 (15,"(0,15)",16,f,f,"0f 00 00 00 00 00 00 00")

 (16,"(0,16)",16,f,f,"10 00 00 00 00 00 00 00")

 (17,"(0,17)",16,f,f,"11 00 00 00 00 00 00 00")

 (18,"(0,18)",16,f,f,"12 00 00 00 00 00 00 00")

 (19,"(0,19)",16,f,f,"13 00 00 00 00 00 00 00")

 (20,"(0,20)",16,f,f,"14 00 00 00 00 00 00 00")

(20 rows)

插入20条,一个root页面就能存放,那么就没有必要申请一个leaf pageroot page就是leaf page,他们的btpo_flags就是3;由于没有branch page,因此level也就是0

继续插入数据:

apple=# insert into test select t.id, md5(random()::text) from generate_series(21, 1000) as t(id);

INSERT 0 980

apple=# select * from bt_metap('test_pkey');

 magic  | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples

--------+---------+------+-------+----------+-----------+-------------+-------------------------

 340322 |       3 |    3 |     1 |        3 |         1 |           0 |                      -1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 0);

ERROR:  block 0 is a meta page

apple=# select * from bt_page_stats('test_pkey', 1);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     1 | l    |        367 |          0 |            16 |      8192 |       808 |         0 |         2 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 2);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     2 | l    |        367 |          0 |            16 |      8192 |       808 |         1 |         4 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 3);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     3 | r    |          3 |          0 |            13 |      8192 |      8096 |         0 |         0 |    1 |          2

(1 row)

apple=# select * from bt_page_stats('test_pkey', 4);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     4 | l    |        268 |          0 |            16 |      8192 |      2788 |         2 |         0 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 5);

ERROR:  block number out of range

可以看到leve0变为了1,有了新的root page,从block 1变为了block 3,且加入了三个新的leaf page

我们可以看到一个leaf页面大概在以int类型为索引时,大概可以存放367条记录,而一个root page中记录一个leaf page指针只需要13bit大小,那么我们继续增大多少条,可以出现branch page呢?

(8192/13) * 367 - 1000 = 230210条,那么我们就插入数据试试:

apple=# insert into test select t.id, md5(random()::text) from generate_series(1001, 230210) as t(id);

INSERT 0 229210

apple=# select * from bt_page_stats('test_pkey', 0);

ERROR:  block 0 is a meta page

apple=# analyze ;

ANALYZE

apple=# select * from bt_metap('test_pkey');

 magic  | version | root | level | fastroot | fastlevel | oldest_xact | last_cleanup_num_tuples

--------+---------+------+-------+----------+-----------+-------------+-------------------------

 340322 |       3 |  412 |     2 |      412 |         2 |           0 |                      -1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 412);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

   412 | r    |          2 |          0 |            12 |      8192 |      8116 |         0 |         0 |    2 |          2

(1 row)

apple=# select * from bt_page_stats('test_pkey', 411);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

   411 | i    |        344 |          0 |            15 |      8192 |      1276 |         3 |         0 |    1 |          0

(1 row)

apple=# select * from bt_page_stats('test_pkey', 3);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     3 | i    |        286 |          0 |            15 |      8192 |      2436 |         0 |       411 |    1 |          0

(1 row)

apple=# select * from bt_page_stats('test_pkey', 8);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     8 | l    |        367 |          0 |            16 |      8192 |       808 |         7 |         9 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 1);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     1 | l    |        367 |          0 |            16 |      8192 |       808 |         0 |         2 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 2);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     2 | l    |        367 |          0 |            16 |      8192 |       808 |         1 |         4 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 4);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

     4 | l    |        367 |          0 |            16 |      8192 |       808 |         2 |         5 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 632);

 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags

-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------

   632 | l    |        362 |          0 |            16 |      8192 |       908 |       631 |         0 |    0 |          1

(1 row)

apple=# select * from bt_page_stats('test_pkey', 633);

ERROR:  block number out of range

上面可以看到level由1变为了2,root page又由上面的block 3变为了block 412,而block 3蜕变为一个branch节点;增加了两个branch page分别是btpo_flags为0的block 411和 block 3;可以计算到最后一个page应该是(8192/13) + 2 = 632。

两个branch page是从第一个指向第二个3的下一个是411,在哪里看到3号block是第一个branch page?

所有的leaf page是从0->1->2->4->5 … ->632->0,怎么知道哪个leaf page是从哪个branch page指出来的呢?

答案是可以通过看root page和branch page里面的值来看:

从root page的值可以看到是存放了对应的branch page的块号和偏移量

apple=# select * from bt_page_items('test_pkey', 412);

 itemoffset |   ctid   | itemlen | nulls | vars |          data

------------+----------+---------+-------+------+-------------------------

          1 | (3,0)    |       8 | f     | f    |

          2 | (411,31) |      16 | f     | f    | 77 97 01 00 00 00 00 00

(2 rows)

branch page存放了leaf page的block number和offset

apple=# select * from bt_page_items('test_pkey', 3);

 itemoffset |   ctid    | itemlen | nulls | vars |          data

------------+-----------+---------+-------+------+-------------------------

          1 | (287,31)  |      16 | f     | f    | 77 97 01 00 00 00 00 00

          2 | (1,0)     |       8 | f     | f    |

          3 | (2,7)     |      16 | f     | f    | 6f 01 00 00 00 00 00 00

          4 | (4,13)    |      16 | f     | f    | dd 02 00 00 00 00 00 00

          5 | (5,19)    |      16 | f     | f    | 4b 04 00 00 00 00 00 00

          6 | (6,25)    |      16 | f     | f    | b9 05 00 00 00 00 00 00

          7 | (7,31)    |      16 | f     | f    | 27 07 00 00 00 00 00 00

          8 | (8,37)    |      16 | f     | f    | 95 08 00 00 00 00 00 00

          9 | (9,43)    |      16 | f     | f    | 03 0a 00 00 00 00 00 00

那么root page和branch page的每个item会存放他们对应的块里面索引key按照B+树的方式进行组织,我们这里B+树高度为2,每页可存放630条记录,因此,可以大致的画出当前的拓扑图:

当然这些数据都是基于B+树进行按顺序排列的,B+树可以指定树的宽度,我们这边的宽度不指定,而是按实际大小计算的吗?例如这里:8192/13 = 630,即M=630。

4.扫描时时间消耗估算

apple=# explain (analyze, verbose, timing, costs, buffers) select id from test where id = 11;

QUERY PLAN

----------------------------------------------------------------------------------------------------------------------------

Index Only Scan using test_pkey on public.test  (cost=0.42..8.44 rows=1 width=4) (actual time=0.247..0.248 rows=1 loops=1)

Output: id

Index Cond: (test.id = 11)

Heap Fetches: 1

Buffers: shared hit=4

Planning Time: 0.151 ms

Execution Time: 0.287 ms

(7 rows)

costs = 1 meta page + root page + branch page + leaf page = 4

apple=# explain (analyze, verbose, timing, costs, buffers) select id from test where id < 11;

QUERY PLAN

------------------------------------------------------------------------------------------------------------------------------

Index Only Scan using test_pkey on public.test  (cost=0.42..8.61 rows=11 width=4) (actual time=0.006..0.009 rows=10 loops=1)

Output: id

Index Cond: (test.id < 11)

Heap Fetches: 10

Buffers: shared hit=4

Planning Time: 0.100 ms

Execution Time: 0.027 ms

(7 rows)

costs = 1 meta page + root page + branch page + leaf page = 4,一个块的读取消耗几乎忽略不计。

apple=# explain (analyze, verbose, timing, costs, buffers) select id from test where id in (1,3,1000, 222222, 111111111, 1232244,11);

QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------

Index Only Scan using test_pkey on public.test  (cost=0.42..35.06 rows=7 width=4) (actual time=0.035..0.088 rows=5 loops=1)

Output: id

Index Cond: (test.id = ANY ('{1,3,1000,222222,111111111,1232244,11}'::integer[]))

Heap Fetches: 5

Buffers: shared hit=27

Planning Time: 0.095 ms

Execution Time: 0.113 ms

(7 rows)

只有五条记录在leaf中有,因此:

costs = 1 meta page + 5*(root page + branch page 1 + branch page 2 + leaf page) + 2* (root page +  branch page 1 + branch page 2) = 27

后续给出索引每个item对应的代码结构。

https://www.cnblogs.com/scu-cjx/p/9960483.html

再谈PG索引-存储架构的更多相关文章

  1. 再谈MySql索引

    一.索引简介 MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 索引分单列索引(主键索引.唯一索引.普通索引)和组合索引.单列索引,即一个索引只包含单个列 ...

  2. 谈一下关于CQRS架构如何实现高性能

    CQRS架构简介 前不久,看到博客园一位园友写了一篇文章,其中的观点是,要想高性能,需要尽量:避开网络开销(IO),避开海量数据,避开资源争夺.对于这3点,我觉得很有道理.所以也想谈一下,CQRS架构 ...

  3. 浅谈MySQL索引背后的数据结构及算法

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  4. 浅谈MySQL索引背后的数据结构及算法(转载)

    转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储 ...

  5. 浅谈MySQL索引背后的数据结构及算法【转】

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  6. 【原创】阿里三面:搞透Kafka的存储架构,看这篇就够了

    阅读本文大约需要30分钟.这篇文章干货很多,希望你可以耐心读完. 你好, 我是华仔,在这个 1024 程序员特殊的节日里,又和大家见面了. 从这篇文章开始,我将对 Kafka 专项知识进行深度剖析, ...

  7. 深度长文:深入理解Ceph存储架构

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 本文是一篇Ceph存储架构技术文章,内容深入到每个存储特 ...

  8. QQ 相册后台存储架构重构与跨 IDC 容灾实践

    欢迎大家前往云加社区,获取更多腾讯海量技术实践干货哦~ 作者简介:xianmau,2015 年加入腾讯 TEG 架构平台部,一直负责 QQ 相册平台的维护和建设,主导相册上传架构重构和容灾优化等工作. ...

  9. [转载]再谈PostgreSQL的膨胀和vacuum机制及最佳实践

    本文转载自 www.postgres.cn 下的文章: 再谈PostgreSQL的膨胀和vacuum机制及最佳实践http://www.postgres.cn/news/viewone/1/390 还 ...

随机推荐

  1. 关于C#的学习

    长期以来对C#的认识一直停留在微软件开发的完全面向对象的语言的模糊印象上,对其工程也缺乏多文件以上级别的修改能力,而当前流行度的驱使下,想深入了解它并运用. 于是从git上下载了一个C#开源项目,打开 ...

  2. jquery timeStamp属性 语法

    jquery timeStamp属性 语法 作用:timeStamp 属性包含从 1970 年 1 月 1 日到事件被触发时的毫秒数.直线模组 语法:event.timeStam 参数: 参数 描述 ...

  3. 计算机网络(四),TCP三次握手

    目录 1.三次握手详情 2.为什么需要三次握手才能建立连接 3.首次握手的隐患---SYN超时的问题 4.建立连接之后,Client出现故障 四.TCP三次握手 1.三次握手详情 (1)一开始,客户端 ...

  4. 一些简单题(2)(Source : NOIP历年试题+杂题)

    P3084 [USACO13OPEN]照片Photo 给出$m$个区间$[l_i,r_i]$覆盖$S=[1,n]$,试确定最大特殊点的数使得这每一个区间覆盖且仅覆盖一个特殊点. 如果无解,输出$-1$ ...

  5. classpath说明

    概念解释: classpath : 即项目中WEB-INF下面的classes目录; 应用: [01] src路径下的文件在编译后会放到WEB-INF/classes路径下.默认的classpath是 ...

  6. ANR错误分析

    链接1:https://www.cnblogs.com/xiyuan2016/p/6740623.html 链接2:https://www.jianshu.com/p/3959a601cea6

  7. spark MLlib 概念 6:ALS(Alternating Least Squares) or (ALS-WR)

    Large-scale Parallel Collaborative Filtering for the Netflix Prize http://www.hpl.hp.com/personal/Ro ...

  8. spark 笔记 6: RDD

    了解RDD之前,必读UCB的论文,个人认为这是最好的资料,没有之一. http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf A Re ...

  9. 使用多块GPU进行训练 1.slim.arg_scope(对于同等类型使用相同操作) 2.tf.name_scope(定义名字的范围) 3.tf.get_variable_scope().reuse_variable(参数的复用) 4.tf.py_func(构造函数)

    1. slim.arg_scope(函数, 传参) # 对于同类的函数操作,都传入相同的参数 from tensorflow.contrib import slim as slim import te ...

  10. Navicat1_介绍

    https://study.163.com/course/courseMain.htm?courseId=1006383008&share=2&shareId=400000000398 ...