[SCOI2009]迷路(矩阵快速幂) 题解
Description
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
Input
第一行包含两个整数,N T。 接下来有 N 行,每行一个长度为 N 的字符串。 第i行第j列为'0'表示从节点i到节点j没有边。 为'1'到'9'表示从节点i到节点j需要耗费的时间。
Output
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。
Sample Input
2 2
11
00
【输入样例二】
5 30
12045
07105
47805
12024
12345
Sample Output
1
【样例解释一】
0->0->1
【输出样例二】
852
HINT
30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。 100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
结论:对于边权都相同的邻接矩阵$G$,$G^T$表示两点间长度为$T$的路径的方案数。
考虑矩阵乘法在这类题中的实际意义:
$a[i][j]=\sum b[i][k]*b[k][j]$ 可以把k看作枚举的中继,就得到了更进一步的方案数
即
$(i->j)的方案数 = (i->k)的方案数 * (k->j)的方案数 \ (起点终点固定)$
自乘$n-1$次即可得到两点间长度为n的方案数。
虽然这道题带权,但可以注意到边权种类很少,完全可以在一条路上强行加点起到统一边权的效果。
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=,mod=;
struct matrix
{
int a[N][N];
matrix()
{
memset(a,,sizeof(a));
}
}g;
int n,T;
matrix operator * (matrix x,matrix y)
{
matrix res;
for(int i=;i<n*;i++)
for(int j=;j<n*;j++)
for(int k=;k<n*;k++)
(res.a[i][j]+=x.a[i][k]*y.a[k][j])%=mod;
return res;
}
matrix qpow(matrix a,int b)
{
matrix res=a;
while(b)
{
if(b&)res=res*a;
a=a*a;;
b>>=;
}
return res;
}
int main()
{
scanf("%d%d",&n,&T);
char s[N];
for(int i=;i<n;i++)
{
scanf("%s",s);
for(int j=;j<n;j++)
{
if(s[j]=='')continue;
int x=s[j]-'';
x--;
g.a[i*+x][j*]=;
}
for(int j=;j<;j++)
g.a[i*+j][i*+j+]=;
}
matrix res=qpow(g,T-);
cout<<res.a[][*(n-)]<<endl;
return ;
}
[SCOI2009]迷路(矩阵快速幂) 题解的更多相关文章
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...
- BZOJ 1297 迷路(矩阵快速幂)
很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
[BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
随机推荐
- axios拦截设置和错误处理
目前想出的处理接口请求进行全局错误提示 的最佳方案,axios整体配置如下 1.基于axiso.interceptors进行响应拦截: 主要负责全局提示错误 axios.interceptors.re ...
- 【Flutter学习】可滚动组件之滚动监听及控制
一,概述 ScrollController可以用来控制可滚动widget的滚动位置 二,ScrollController 构造函数 ScrollController({ double initialS ...
- 常用github命令
常用github命令 git--版本控制软件 GitHub是一个基于Git的远程文件托管平台(同GitCafe.BitBucket和GitLab等). 在家里,开发完毕部分功能,推送到GitHub: ...
- Sqli labs系列-less-5&6 报错注入法(下)
我先输入 ' 让其出错. 然后知道语句是单引号闭合. 然后直接 and 1=1 测试. 返回正常,再 and 1=2 . 返回错误,开始猜表段数. 恩,3位.让其报错,然后注入... 擦,不错出,再加 ...
- Android程序中欢迎界面
额,在做项目中,肯定首先要用到欢迎界面,下面是我在做项目中用的最简单的一个欢迎界面,即打开程序时,先是显示一张图片,然后等一段时间后图片消失,进入登录界面.直接上代码,有注释也不用解释了: 首先是We ...
- cs224d 作业 problem set2 (一) 用tensorflow纯手写实现sofmax 函数,线性判别分析,命名实体识别
Hi Dear Today we will use tensorflow to implement the softmax regression and linear classifier algor ...
- selenium自动化测试时,chrome 出现“Chrome 正受到自动测试软件的控制”的解决办法
背景 使用selenium自动化测试的时候,启动浏览器出现'Chrome正在受到自动软件的控制'的问题,修改方法有两种. 一.在浏览器配置里加个参数,忽略掉这个警告提示语:disable_infoba ...
- 解决(Oracle)ORA-12528: TNS: 监听程序: 所有适用例程都无法建立新连接 问题
解决(Oracle)ORA-12528: TNS: 监听程序: 所有适用例程都无法建立新连接 问题通过在CMD下用lsnrctl status 查看出的问题:发现BLOCKEDORACLE启动步骤:s ...
- 初探Remoting双向通信(二)
原 初探Remoting双向通信(二) 2013年06月25日 11:46:24 喜欢特别冷的冬天下着雪 阅读数 2977 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...
- python之序列去重以及生成器、生成器函数、生成器表达式与迭代器浅谈
首先要明确序列值类型是否可哈希,因为可哈希的值很简单就可以用 in /not in 写个生成器去判断,如果是不可哈希的就要去转换为可哈希的再用 in/not in 去判断 原地不可变类型(可哈希): ...