FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4) might go like this:

    3   1   2   4

4 3 6

7 9

16

Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities.

Write a program to help FJ play the game and keep up with the cows.

Input

Line 1: Two space-separated integers: N and the final sum.

Output

Line 1: An ordering of the integers 1..N that leads to the given sum. If there are multiple solutions, choose the one that is lexicographically least, i.e., that puts smaller numbers first.

Sample Input

4 16

Sample Output

3 1 2 4

Hint

Explanation of the sample:

There are other possible sequences, such as 3 2 1 4, but 3 1 2 4 is the lexicographically smallest.

 
 
这个题竟然是深搜,看得题目中说用全排列字典序输出有点吓人...
我们先来看一下杨辉三角形的性质。第n行第m个数的值是C上m 下n-1 (组合数打不出来啊...),由于杨辉三角形的形成过程的逆过程。我们可以知道sum的最终和
sum=0 C n-1*ans[0]+1 C n-1*ans[1]+2 C n-1*ans[2]+3 C n-1*ans[3]+4 C n-1*ans[4]+......
好好理解这个逆过程因为杨辉三角形一开始都是用1加起来的,所以我们从底下往上加的时候,每个最底层的数在求和时算了多少次?那个次数就是底层数字对应杨辉三角形的值。
剩下的交给深搜了。

 #include <cstdio>
#include <cstring>
using namespace std;
int a[][],n,sum,vis[],ans[];
bool f;
void setnum ()//生成杨辉三角形
{
for (int i=;i<n;++i)
{
a[i][]=;
a[i][i]=;
}
for (int i=;i<n;++i)
for (int j=;j<i;++j)
a[i][j]=a[i-][j-]+a[i-][j];
}
void printAns ()
{
for (int i=;i<n;++i)
{
printf("%d",ans[i]);
if (i!=n-)
printf(" ");
}
printf("\n");
}
void dfs (int nowsum,int step)//这样的搜索是刚好字典序的
{
if (step==n)
{
if (nowsum==sum)
{
f=true;
printAns();
}
return ;
}
if (f||nowsum>sum)
return ;
for (int i=;i<=n;++i)
{
if (vis[i])
continue;
vis[i]=;
ans[step]=i;
dfs(nowsum+i*a[n-][step],step+);
vis[i]=;//每次搜完以后要清空状态
}
}
int main()
{
scanf("%d%d",&n,&sum);
setnum();
f=false;
memset(vis,,sizeof vis);
memset(ans,,sizeof ans);
dfs(,);
return ;
}

POJ 3187 Backward Digit Sums (dfs,杨辉三角形性质)的更多相关文章

  1. POJ 3187 Backward Digit Sums 枚举水~

    POJ 3187  Backward Digit Sums http://poj.org/problem?id=3187 题目大意: 给你一个原始的数字序列: 3   1   2   4  他可以相邻 ...

  2. poj 3187 Backward Digit Sums(穷竭搜索dfs)

    Description FJ and his cows enjoy playing a mental game. They write down the numbers to N ( <= N ...

  3. 穷竭搜索:POJ 3187 Backward Digit Sums

    题目:http://poj.org/problem?id=3187 题意: 像这样,输入N : 表示层数,输入over表示最后一层的数字,然后这是一个杨辉三角,根据这个公式,由最后一层的数,推出第一行 ...

  4. POJ 3187 Backward Digit Sums

    暴力DFS+验证. 验证如果是暴力检验可能复杂度会太高,事实上可以o(1)进行,这个可以o(n*n)dp预处理. #include<cstdio> #include<cstring& ...

  5. POJ 3187 Backward Digit Sums (递推,bruteforce)

    第1行j列的一个1加到最后1行满足杨辉三角,可以先推出组合数来 然后next_permutation直接暴. #include<cstdio> #include<iostream&g ...

  6. Backward Digit Sums(POJ 3187)

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5495   Accepted: 31 ...

  7. 【POJ - 3187】Backward Digit Sums(搜索)

    -->Backward Digit Sums 直接写中文了 Descriptions: FJ 和 他的奶牛们在玩一个心理游戏.他们以某种方式写下1至N的数字(1<=N<=10). 然 ...

  8. P1118 [USACO06FEB]Backward Digit Sums G/S

    P1118 [USACO06FEB]Backward Digit Sums G/S 题解:  (1)暴力法.对1-N这N个数做从小到大的全排列,对每个全排列进行三角形的计算,判断是否等于N.  对每个 ...

  9. Backward Digit Sums(暴力)

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5664   Accepted: 32 ...

随机推荐

  1. fileupload组件之上传与下载的页面

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  2. Python基础教程(016)--Python2和Python3的介绍

    前言 Python2和Python3的区别 内容 Python3是现在和未来的主要版本 Python3没有考虑向下兼容. 官方提供了一个Python过度版本Python2.6 Python2.6及支持 ...

  3. bugku | flagphp

    1.开脑洞 http://123.206.87.240:8002/flagphp/?hint=1 2.读源码得到条件是要求反序列化后的‘ISecer’的值等于$KEY <?php error_r ...

  4. Java程序执行的过程

    ava程序执行的过程: Step1:将字节码加入内存: Step2:对字节码进行合法性检查: Step3:jvm会为每个字节码文件都生成一个对象(class): Step4:执行静态代码块,初始化静态 ...

  5. 使用Microsoft.Practices.Unity 依赖注入

    Unity是微软Patterns & Practices团队所开发的一个轻量级的,并且可扩展的依赖注入(Dependency Injection)容器,它支持常用的三种依赖注入方式:构造器注入 ...

  6. mysql隔离级别相关

    1.原子性.隔离性.一致性.持久性 2.mysql并发控制可能出现的问题: 脏读(A事务读取到B事务未commit的数据后,B事务回滚) 不可重复读(A事务第一次读到的数据,被B事务更新数据后,第二次 ...

  7. Hive if和coalesce函数

    链接:https://blog.csdn.net/qq_26442553/article/details/79465417 if 函数举例:

  8. (62)C# 动态绑定

    动态绑定不能绕过成员可访问性的规则

  9. Maven初了解

    这周开始,我正式上手了接口测试.我们接口测试使用的是Maven做项目管理,用Junit做测试框架.所以我稍微了解了一下Maven. 那么什么是Maven呢? Maven是基于项目对象模型(POM pr ...

  10. 嵌入式C语言3.2 关键字---自定义数据类型

    1. struct 结构体 基本语法 struct myabc{ unsigned int a; unsigned int b; unsigned int c; unsigned int d; } 调 ...