非阻塞的同步机制

简单的说,那就是又要实现同步,又不使用锁。

与基于锁的方案相比,非阻塞算法的实现要麻烦的多,但是它的可伸缩性和活跃性上拥有巨大的优势。

实现非阻塞算法的常见方法就是使用volatile语义和原子变量。

硬件对并发的支持

原子变量的产生主要是处理器的支持,最重要的是大多数处理器架构都支持的CAS(比较并交换)指令。

模拟实现AtomicInteger的++操作

首先我们模拟处理器的CAS语法,之所以说模拟,是因为CAS在处理器中是原子操作直接支持的。不需要加锁。

  1. public synchronized int compareAndSwap(int exceptValue, int newValue){
  2.         int oldValue = count;
  3.         if(oldValue == exceptValue){
  4.             count = newValue;
  5.         }
  6.         return oldValue;
  7.     }

注意:CAS总是返回oldValue。

使用上面的方法模拟AtomicInteger的++操作。

  1. class MyAtomicInteger{
  2.    private int value;
  3.    public int incrementAndGet()
  4.    {
  5.       int v ;
  6.       do{
  7.          v = value;
  8.       }while(v != compareAndSwap(v,v+1));
  9.  
  10.       return v + 1;
  11.    }
  12. }

注意:Java的AtomicInteger大概实现机制就是这样的,不会阻塞,使用处理器的CAS功能,但是要轮询尝试。

看起来轮询尝试性能会更差,其实不然,当竞争不是非常高的时候,基于CAS的算法更胜一筹。

原子类

AtomicBoolean AtomicInteger AtomicLong AtomicReference

原子数组类:AtomicIntegerArray AtomicLong AtomicReferenceArray。

使用volatile语法修饰的数组只能保证数组变量本身的volatile语义,不能保证元素的volatile语义。这个时候应该使用,原子数组类。

注意:AtomicBoolean AtomicInteger AtomicLong和非原子的对应数值类如Integer截然不用。实现机制完全不一样,也没有对应关系。最重要的一个差别:这个三个原子类是可变的。而且是使用的Object的hashCode和equals方法,没有自己扩展。

性能比较:锁与原子变量

在中低程度的竞争下,原子变量能提供很高的可伸缩性,原子变量性能超过锁;而在高强度的竞争下,锁能够更有效地避免竞争,锁的性能将超过原子变量的性能。但在更真实的实际情况(一般没有那么高强大的竞争)中,原子变量的性能将超过锁的性能。

注意:不论是锁还是原子变量,都远远比不上避免共享状态(如使用线程封闭技术,但是使用场景计较局限),彻底消除竞争的效率。

两个非阻塞的算法示例

  1. /**
  2.  * 使用Treiber算法构造的非阻塞栈
  3.  */
  4. public class ConcurrentStack<E> {
  5.     private AtomicReference<Node<E>> top = new AtomicReference<ConcurrentStack.Node<E>>();
  6.  
  7.     public void push(E item){
  8.         Node<E> newHead = new Node<E>(item);
  9.         Node<E> oldHead;
  10.  
  11.         do{
  12.             oldHead = top.get();
  13.             newHead.next = oldHead;
  14.         } while (!top.compareAndSet(oldHead, newHead));
  15.     }
  16.  
  17.     public E pop(){
  18.         Node<E> oldHead;
  19.         Node<E> newHead;
  20.  
  21.         do {
  22.             oldHead = top.get();
  23.             if (oldHead == null)
  24.                 return null;
  25.             newHead = oldHead.next;
  26.         } while (!top.compareAndSet(oldHead, newHead));
  27.         return oldHead.item;
  28.     }
  29.  
  30.     private static class Node<E>{
  31.         public final E item;
  32.         public Node<E> next;
  33.  
  34.         public Node(E item){
  35.             this.item = item;
  36.         }
  37.     }
  38. }

下面这个没有看懂,留在这里记录,以后再看:

  1. /**
  2.  * 链表中非阻塞算法中的插入排序,来自Michael-Scott
  3.  */
  4. public class LinkedQueue<E> {
  5.     private static class Node<E>{
  6.         final E item;
  7.         final AtomicReference<Node<E>> next;
  8.  
  9.         public Node(E item, Node<E> next){
  10.             this.item = item;
  11.             this.next = new AtomicReference<>(next);
  12.         }
  13.     }
  14.  
  15.     private final Node<E> dummy = new Node<E>(null, null);
  16.     private final AtomicReference<Node<E>> head =
  17.                         new AtomicReference<>(dummy);
  18.     private final AtomicReference<Node<E>> tail =
  19.                         new AtomicReference<>(dummy);
  20.  
  21.     public boolean put(E item){
  22.         Node<E> newNode = new Node<E>(item, null);
  23.         while (true){
  24.             Node<E> curTail = tail.get();
  25.             Node<E> tailNext = curTail.next.get();
  26.             if (curTail == tail.get()){ //尾部还未修改
  27.                 if (tailNext != null){
  28.                     // 队列处于中间状态(即新节点已经接上,尾节点还未更新),推进尾节点
  29.                     tail.compareAndSet(curTail, tailNext);
  30.                 } else{
  31.                     // 处于稳定状态, 尝试插入新节点
  32.                     if (curTail.next.compareAndSet(null, newNode)){
  33.                         // 插入成功后,推进尾节点
  34.                         tail.compareAndSet(curTail, tailNext);
  35.                         return true;
  36.                     }
  37.                 }
  38.             }
  39.         }
  40.     }
  41. }

Java并发编程实战 第15章 原子变量和非阻塞同步机制的更多相关文章

  1. 《Java并发编程实战》第十五章 原子变量与非堵塞同步机制 读书笔记

    一.锁的劣势 锁定后假设未释放.再次请求锁时会造成堵塞.多线程调度通常遇到堵塞会进行上下文切换,造成很多其它的开销. 在挂起与恢复线程等过程中存在着非常大的开销,而且通常存在着较长时间的中断. 锁可能 ...

  2. Java多线程并发编程之原子变量与非阻塞同步机制

    1.非阻塞算法 非阻塞算法属于并发算法,它们可以安全地派生它们的线程,不通过锁定派生,而是通过低级的原子性的硬件原生形式 -- 例如比较和交换.非阻塞算法的设计与实现极为困难,但是它们能够提供更好的吞 ...

  3. Java并发编程实战---第六章:任务执行

    废话开篇 今天开始学习Java并发编程实战,很多大牛都推荐,所以为了能在并发编程的道路上留下点书本上的知识,所以也就有了这篇博文.今天主要学习的是任务执行章节,主要讲了任务执行定义.Executor. ...

  4. Java并发编程实战 第16章 Java内存模型

    什么是内存模型 JMM(Java内存模型)规定了JVM必须遵循一组最小保证,这组保证规定了对变量的写入操作在何时将对其他线程可见. JMM为程序中所有的操作定义了一个偏序关系,称为Happens-Be ...

  5. java并发编程实战:第十五章----原子变量与非阻塞机制

    非阻塞算法:使用底层的原子机器指令(例如比较并交换指令)代替锁来确保数据在并发访问中的一致性 应用于在操作系统和JVM中实现线程 / 进程调度机制.垃圾回收机制以及锁和其他并发数据结构 可伸缩性和活跃 ...

  6. 【java并发编程实战】第一章笔记

    1.线程安全的定义 当多个线程访问某个类时,不管允许环境采用何种调度方式或者这些线程如何交替执行,这个类都能表现出正确的行为 如果一个类既不包含任何域,也不包含任何对其他类中域的引用.则它一定是无状态 ...

  7. java并发编程实战:第二章----线程安全性

    一个对象是否需要是线程安全的取决于它是否被多个线程访问. 当多个线程访问同一个可变状态量时如果没有使用正确的同步规则,就有可能出错.解决办法: 不在线程之间共享该变量 将状态变量修改为不可变的 在访问 ...

  8. Java并发编程实战 第8章 线程池的使用

    合理的控制线程池的大小: 下面内容来自网络.不过跟作者说的一致.不想自己敲了.留个记录. 要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析: 任务的性质:CPU密集型任务.IO ...

  9. 《Java并发编程实战》第二章 线程安全性 读书笔记

    一.什么是线程安全性 编写线程安全的代码 核心在于要对状态訪问操作进行管理. 共享,可变的状态的訪问 - 前者表示多个线程訪问, 后者声明周期内发生改变. 线程安全性 核心概念是正确性.某个类的行为与 ...

随机推荐

  1. Switch 开关

    表示两种相互对立的状态间的切换,多用于触发「开/关」. 基本用法 绑定v-model到一个Boolean类型的变量.可以使用active-color属性与inactive-color属性来设置开关的背 ...

  2. 什么是web语义化,有什么好处

    web语义化是指通过HTML标记表示页面包含的信息,包含了HTML标签的语义化和css命名的语义化.HTML语义化是指:通过使用包含语义的标签(如h1-h6)恰当地表示文档结构 CSS命名的语义化是指 ...

  3. c# VirtualKeys

    /// <summary> /// Enumeration for virtual keys taken from http://www.pinvoke.net/default.aspx/ ...

  4. Matlab学习笔记1—MATLAB基础知识

    1.1  MATLAB系统环境 1.MATLAB操作界面的组成 (1)MATLAB主窗口 (2)命令行窗口:命令行窗口用于输入命令并显示命令的执行结果. (3) 当前文件夹窗口 如何设置当前文件夹呢? ...

  5. Linux解决Python调用Matlab函数无法导入matlab.engine问题及其他注意事项

    问题描述 Linux系统,根据matlab官方文档说明,利用Matlab中的API来实现Python调用Matlab函数.具体方法见文档: https://ww2.mathworks.cn/help/ ...

  6. OUTLOOK、foxmail等无法直接打开邮件中的超级链接问题

         部分电脑,在OUTLOOK或Foxmail收到隔离邮件通知时,点击发送或删除时,提示“一般性错误,*******************,找不到应用程序”.或打开其它HTML格式的邮件正文中 ...

  7. vue如何实现热更新

    我们都知道,对于node来说,前端vue代码的迭代节奏是很快的,可能一周要迭代几次,但是node的迭代却没那么平凡,可能一周更新一次甚至更久,那么为了node服务的稳定,减少node服务的发布次数,是 ...

  8. HTML标签-->段落,格式,文本

    只有努力奔跑,才能一直停留在原地. <!--段落标签--> <h1>默认向左</h1> <h1 align="right">向右对齐 ...

  9. 几个关于json序列化 的注解

    一.@JsonProperty 1.此注解用于属性上,作用是把该属性的名称序列化为另外一个名称.例如: @JsonProperty("name") private String N ...

  10. mysql分表规则(转)

    author:skatetime:2013/05/14 Mysql分表准则 在大量使用mysql时,数据量大.高访问时,为了提高性能需要分表处理,简介下mysql分表的标准,后续会继续补充 环境:业务 ...