【LCT维护子树信息】uoj207 共价大爷游长沙
这道题思路方面就不多讲了,主要是通过这题学一下lct维护子树信息。
lct某节点u的子树信息由其重链的一棵splay上信息和若干轻儿子子树信息合并而成。
splay是有子树结构的,可以在rotate,access的时候由儿子update到父亲,而轻儿子的信息update不上来,需要另外记一下。
记sum[x]为我们要求的子树信息,xu[x]为x的轻儿子的子树信息。
(即,xu[x]由轻儿子的sum更新,sum[x]由xu[x]和splay子树上的儿子的sum更新。
这样我们就可以完整地用lct维护子树信息了。
需要注意的是,修改点权的时候一定要先make_root,不然会影响到祖先的sum和xu,复杂度就不对了。
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
int n,m,id;
const int N =200005;
typedef unsigned long long ll;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch<='9'&&ch>='0')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x;
}
struct la{int u,v;ll x;}w[3*N];
ll S;
int cnt;
#define ju(x) (ch[fa[x]][1]==x)
#define nrt(x) ((ch[fa[x]][1]==x)||(ch[fa[x]][0]==x))
int fa[N],ch[N][2];
ll val[N],sum[N],xu[N];
bool r[N];
#define lc (ch[x][0])
#define rc (ch[x][1])
void ud(int x){
sum[x]=sum[lc]^sum[rc]^val[x]^xu[x];
}
inline void rev(int x){swap(lc,rc),r[x]^=1;}
void psdn(int x){
if(r[x]){
if(lc)rev(lc);
if(rc)rev(rc);
r[x]=0;
}
}
void push(int x){
if(nrt(x))push(fa[x]);
psdn(x);
}
inline void rot(int x){
int f=fa[x],of=fa[f],dir=ju(x),nt=nrt(f);
if(ch[x][dir^1])fa[ch[x][dir^1]]=f;
ch[f][dir]=ch[x][dir^1];
fa[f]=x,ch[x][dir^1]=f;
fa[x]=of;
if(nt)ch[of][ch[of][1]==f]=x;
ud(f),ud(x);
}
inline void splay(int x){
push(x);
for(int f=fa[x];nrt(x);rot(x),f=fa[x])
if(nrt(f))if(ju(x)^ju(f))rot(x);else rot(f);
}
inline void access(int x){
for(int y=0;x;x=fa[y=x]){
splay(x);
xu[x]^=sum[y];
xu[x]^=sum[ch[x][1]];
ch[x][1]=y;
ud(x);
//update!
}
}
inline void make_root(int x){
access(x),splay(x),rev(x);
}
inline void cut(int x,int y){
make_root(x),access(y),splay(x);
ch[x][1]=fa[y]=0;ud(x);
}
inline void link(int x,int y){
make_root(y),splay(y),make_root(x),splay(x),fa[x]=y;xu[y]^=sum[x];
}
inline void change(int x,ll v){
make_root(x);splay(x);val[x]^=v;
ud(x);
}
int main(){
srand(time(0));
id=read(),n=read(),m=read();
int u,v,op,x,y;
rep(i,2,n)scanf("%d%d",&u,&v),link(u,v);
while(m--){
op=read(),u=read();
if(op==1){
v=read(),x=read(),y=read();
cut(u,v),link(x,y);
}
else if(op==2){
v=read();
w[++cnt]=(la){u,v,(ll)1ll*rand()*rand()};
change(u,w[cnt].x),change(v,w[cnt].x);
S^=w[cnt].x;
}
else if(op==3){
x=w[u].u,y=w[u].v;
change(x,w[u].x),change(y,w[u].x);
S^=w[u].x;
}
else{
v=read();
make_root(u),access(v);
splay(u);
if(S==sum[v])puts("YES");
else puts("NO");
}
}
return 0;
}
【LCT维护子树信息】uoj207 共价大爷游长沙的更多相关文章
- uoj207 共价大爷游长沙 子树信息 LCT + 随机化 + 路径覆盖
题目传送门 http://uoj.ac/problem/207 题解 如果是一棵静态的树,有一个非常容易想到的算法:统计一下目前的每一个条边被几条路径经过,如果 \(x\) 到 \(y\) 的边的这个 ...
- [UOJ207]共价大爷游长沙
UOJ sol 这题真是太神啦! 对于S集合中的每个点对,给他们随机附上一个相同权值. 两个点在边(x,y)的两侧当且仅当一个点在x的子树中,另一个点不在x的子树中(假设x是y的儿子) 维护一下子树点 ...
- uoj207共价大爷游长沙
话说我可能还没有调出魔法森林呢...说好的lct第一题呢... 又是一个随机化的方法,毕竟又是判定性的问题 上次是判断无向图联通 这次是判断一些路径是否经过一条定边 若把路径上的边全部异或上一个路径的 ...
- 【uoj#207】共价大爷游长沙 随机化+LCT维护子树信息
题目描述 给出一棵树和一个点对集合S,多次改变这棵树的形态.在集合中加入或删除点对,或询问集合内的每组点对之间的路径是否都经过某条给定边. 输入 输入的第一行包含一个整数 id,表示测试数据编号,如第 ...
- 共价大爷游长沙 lct 维护子树信息
这个题目的关键就是判断 大爷所有可能会走的路 会不会经过询问的边. 某一条路径经过其中的一条边, 那么2个端点是在这条边的2测的. 现在我们要判断所有的路径是不是都经过 u -> v 我们以u为 ...
- UOJ #207. 共价大爷游长沙 [lct 异或]
#207. 共价大爷游长沙 题意:一棵树,支持加边删边,加入点对,删除点对,询问所有点对是否经过一条边 一开始一直想在边权上做文章,或者从连通分量角度考虑,比较接近正解了,但是没想到给点对分配权值所以 ...
- 【UOJ207】共价大爷游长沙(Link-Cut Tree,随机化)
[UOJ207]共价大爷游长沙(Link-Cut Tree,随机化) 题面 UOJ 题解 这题太神了 \(\%\%\%myy\) 看到动态的维护边很容易的想到了\(LCT\) 然后能否堵住一条路 我们 ...
- LCT维护子树信息
有些题目,在要求支持link-cut之外,还会在线询问某个子树的信息.LCT可以通过维护虚边信息完成这个操作. 对于LCT上每个节点,维护两个两sz和si,后者维护该点所有虚儿子的信息,前者维护该点的 ...
- 「UOJ207」共价大爷游长沙
「UOJ207」共价大爷游长沙 解题思路 : 快速判断两个集合是否完全相等可以随机点权 \(\text{xor}\) 的思路可以用到这道题上面,给每一条路径随机一个点权,维护出经过每一条边的点权的 \ ...
随机推荐
- trizip haskell implementation
1 trizip :: [a] -> [b] -> [c] -> [(a,b,c)] 2 trizip a b c 3 | null a = [] 4 | null b = [] 5 ...
- T1219:马走日
[题目描述] 马在中国象棋以日字形规则移动. 请编写一段程序,给定n×m大小的棋盘,以及马的初始位置(x,y),要求不能重复经过棋盘上的同一个点,计算马可以有多少途径遍历棋盘上的所有点. [输入] 第 ...
- 浅析java设计模式(一)----异构容器,可以存储任何对象类型为其他类提供该对象
最近在着手重构一个java UI桌面项目,发现这个项目在一开始的时候由于需求不明确,以及开发人员对swing框架不熟悉等问题造成了页面代码混乱的情况:为了能够在各个类里都可以拿到其他类的引用去进行相应 ...
- Intellij Idea乱码解决方案都在这里了
乱码场景 使用Intellij Idea经常遇到乱码问题,可以总结为以下几类乱码的场景. 1.工程代码乱码. 2.main方法运行,控制台乱码. 3.tomcat运行,控制台乱码. 解决方案 1.工程 ...
- Linux中通过grep命令检索文件内容和指定内容前后几行
原文链接: https://www.linuxidc.com/Linux/2017-11/148390.htm Linux系统中搜索.查找文件中的内容,一般最常用的是grep命令,另外还有egrep命 ...
- luoguP1525 关押罪犯 题解(NOIP2010)(并查集反集)
P1525 关押罪犯 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<c ...
- Nacos-服务注册地址为内网IP的解决办法
最近在使用Spring Cloud Alibaba这一套微服务解决方案,但是在服务注册的时候,网关死活找不到微服务地址,自己的微服务通过网关怎么也访问不到. 查找原因 仔细一查才发现,网关去访问了一个 ...
- 浏览器中的JavaScript事件循环机制
浏览器的事件循环机制是HTML中定义的规范. JavaScript有一个主线程和调用栈,所有的任务都会被放到调用栈等待主线程执行. JS调用栈 是一种先进后出的数据结构.当函数被调用时,会被添加到栈中 ...
- for循环(C语言型)流程
- shell变量及相关命令